Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pro_python_code/1630
Create:
Last Update:

🌟 MatterSim: DL-модель для предсказания свойств материалов от Microsoft.

MatterSim - усовершенствованная модель глубокого обучения в области материаловедения, предназначенная для моделирования свойств материалов в широком диапазоне элементов, температур и давлений. Она способна точно предсказывать свойства материалов по всей периодической таблице в диапазоне температур от 0 до 5000K и давления до 1000GPa.

MatterSim использует архитектуру M3GNet, которая включает в себя двух- и трехчастичные взаимодействия. Модель обучается с использованием функции потерь, учитывающей энергию на атом, вектор силы на каждом атоме и напряжение.

Особенность MatterSim - способность к активному и непрерывному обучению. Модель способна оценивать неопределенность своих прогнозов и выбирать структуры для активного обучения, что полезно для повышения точности моделирования сложных систем. MatterSim может быть настроена для моделирования на произвольном уровне теории.

Модель демонстрирует высокую точность в предсказании свободной энергии Гиббса и 10-кратное улучшение точности по сравнению с универсальными силовыми полями, обученными на траекториях релаксации на наборах данных MPF-TP и Random-TP.

Модель может быть точно настроена для атомистических симуляций на желаемом уровне теории или для прямых предсказаний "структура-свойство"с сокращением требований к данным до 97%.

▶️В релизе представлены 2 версии модели:

🟢MatterSim-v1.0.0-1M - мини-версия модели, которая работает быстрее;
🟢MatterSim-v1.0.0-5M - увеличенная версия, которая является более точной.

⚠️ Рекомендуется устанавливать MatterSim с помощью mamba или micromamba, поскольку conda может работать значительно медленнее при разрешении зависимостей в environment.yaml.

▶️ Установка и использование на примере ASE калькулятора:

# Install package with the latest version
pip install git+https://github.com/microsoft/mattersim.git

# Create env via mamba
mamba env create -f environment.yaml
mamba activate mattersim
uv pip install -e .
python setup.py build_ext --inplace

# Minimal example using ASE calculator
import torch
from ase.build import bulk
from ase.units import GPa
from mattersim.forcefield import MatterSimCalculator

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running MatterSim on {device}")

si = bulk("Si", "diamond", a=5.43)
si.calc = MatterSimCalculator(device=device)
print(f"Energy (eV) = {si.get_potential_energy()}")
print(f"Energy per atom (eV/atom) = {si.get_potential_energy()/len(si)}")
print(f"Forces of first atom (eV/A) = {si.get_forces()[0]}")
print(f"Stress[0][0] (eV/A^3) = {si.get_stress(voigt=False)[0][0]}")
print(f"Stress[0][0] (GPa) = {si.get_stress(voigt=False)[0][0] / GPa}")


📌Лицензирование: MIT License.


🟡Модель
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DL #Mattersim #Microsoft

BY Python RU







Share with your friend now:
tg-me.com/pro_python_code/1630

View MORE
Open in Telegram


Python RU Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Python RU from sg


Telegram Python RU
FROM USA