Telegram Group & Telegram Channel
🧠 SQL-задача с подвохом: кто на самом деле опоздал?

У тебя есть таблица с логами входа сотрудников в офис. Но задача не в том, чтобы просто найти "кто пришёл позже 9:00", а выяснить кого стоит считать реально опоздавшим, если учесть такую бизнес-логику:

> Сотрудники входят в офис через турникет. Иногда турникет сканирует пропуск с задержкой, а иногда — несколько сотрудников входят подряд. Поэтому, если кто-то зашёл не позже, чем через 2 минуты после своего коллеги из той же команды — его не считают опоздавшим.

📊 Данные


CREATE TABLE office_logs (
employee_id INT,
team_id INT,
entry_time TIMESTAMP
);


Пример данных:

| employee_id | team_id | entry_time |
|-------------|---------|---------------------|
| 1 | 10 | 2024-01-01 08:59:10 |
| 2 | 10 | 2024-01-01 09:00:50 |
| 3 | 10 | 2024-01-01 09:02:20 |
| 4 | 20 | 2024-01-01 09:03:00 |
| 5 | 20 | 2024-01-01 09:04:40 |
| 6 | 20 | 2024-01-01 09:10:00 |


🎯 Задача

Напиши SQL-запрос, который определяет реально опоздавших сотрудников, если:

1. Время входа позже 09:00:00
2. Они не шли следом за коллегой из своей команды (разница входа больше 2 минут)
3. Один и тот же сотрудник не может быть "оправдан" несколькими — ищем только ближайшего предыдущего по времени из своей команды

💡 Подсказка: тут нужны:
- оконные функции (`LAG`)
- фильтрация по team_id
- расчёт интервалов времени
- доп. условия на время и порядок

Реальное мышление аналитика начинается там, где бизнес-логика важнее простых фильтров.


Решение:

```sql
WITH logs_with_prev AS (
SELECT
employee_id,
team_id,
entry_time,
LAG(entry_time) OVER (
PARTITION BY team_id
ORDER BY entry_time
) AS prev_entry_time
FROM office_logs
),
marked_late AS (
SELECT
*,
EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) AS seconds_diff
FROM logs_with_prev
)
SELECT
employee_id,
team_id,
entry_time
FROM marked_late
WHERE
entry_time::time > '09:00:00'
AND (
prev_entry_time IS NULL
OR EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) > 120
);
```

🔍 **Что происходит:**
• Сначала `LAG` находит предыдущего входившего из той же команды
• Затем считаем, сколько секунд прошло между входами
• Если прошло больше 2 минут или сотрудник был первым — он **реально опоздал**

📦 Такое решение пригодится, если нужно учитывать **контекст** и **временные связи**, а не просто жёсткие фильтры.

@sqlhub



tg-me.com/sqlhub/1889
Create:
Last Update:

🧠 SQL-задача с подвохом: кто на самом деле опоздал?

У тебя есть таблица с логами входа сотрудников в офис. Но задача не в том, чтобы просто найти "кто пришёл позже 9:00", а выяснить кого стоит считать реально опоздавшим, если учесть такую бизнес-логику:

> Сотрудники входят в офис через турникет. Иногда турникет сканирует пропуск с задержкой, а иногда — несколько сотрудников входят подряд. Поэтому, если кто-то зашёл не позже, чем через 2 минуты после своего коллеги из той же команды — его не считают опоздавшим.

📊 Данные


CREATE TABLE office_logs (
employee_id INT,
team_id INT,
entry_time TIMESTAMP
);


Пример данных:

| employee_id | team_id | entry_time |
|-------------|---------|---------------------|
| 1 | 10 | 2024-01-01 08:59:10 |
| 2 | 10 | 2024-01-01 09:00:50 |
| 3 | 10 | 2024-01-01 09:02:20 |
| 4 | 20 | 2024-01-01 09:03:00 |
| 5 | 20 | 2024-01-01 09:04:40 |
| 6 | 20 | 2024-01-01 09:10:00 |


🎯 Задача

Напиши SQL-запрос, который определяет реально опоздавших сотрудников, если:

1. Время входа позже 09:00:00
2. Они не шли следом за коллегой из своей команды (разница входа больше 2 минут)
3. Один и тот же сотрудник не может быть "оправдан" несколькими — ищем только ближайшего предыдущего по времени из своей команды

💡 Подсказка: тут нужны:
- оконные функции (`LAG`)
- фильтрация по team_id
- расчёт интервалов времени
- доп. условия на время и порядок

Реальное мышление аналитика начинается там, где бизнес-логика важнее простых фильтров.


Решение:

```sql
WITH logs_with_prev AS (
SELECT
employee_id,
team_id,
entry_time,
LAG(entry_time) OVER (
PARTITION BY team_id
ORDER BY entry_time
) AS prev_entry_time
FROM office_logs
),
marked_late AS (
SELECT
*,
EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) AS seconds_diff
FROM logs_with_prev
)
SELECT
employee_id,
team_id,
entry_time
FROM marked_late
WHERE
entry_time::time > '09:00:00'
AND (
prev_entry_time IS NULL
OR EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) > 120
);
```

🔍 **Что происходит:**
• Сначала `LAG` находит предыдущего входившего из той же команды
• Затем считаем, сколько секунд прошло между входами
• Если прошло больше 2 минут или сотрудник был первым — он **реально опоздал**

📦 Такое решение пригодится, если нужно учитывать **контекст** и **временные связи**, а не просто жёсткие фильтры.

@sqlhub

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1889

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Data Science SQL hub from us


Telegram Data Science. SQL hub
FROM USA