Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/sqlhub/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Data Science. SQL hub | Telegram Webview: sqlhub/1889 -
Telegram Group & Telegram Channel
🧠 SQL-задача с подвохом: кто на самом деле опоздал?

У тебя есть таблица с логами входа сотрудников в офис. Но задача не в том, чтобы просто найти "кто пришёл позже 9:00", а выяснить кого стоит считать реально опоздавшим, если учесть такую бизнес-логику:

> Сотрудники входят в офис через турникет. Иногда турникет сканирует пропуск с задержкой, а иногда — несколько сотрудников входят подряд. Поэтому, если кто-то зашёл не позже, чем через 2 минуты после своего коллеги из той же команды — его не считают опоздавшим.

📊 Данные


CREATE TABLE office_logs (
employee_id INT,
team_id INT,
entry_time TIMESTAMP
);


Пример данных:

| employee_id | team_id | entry_time |
|-------------|---------|---------------------|
| 1 | 10 | 2024-01-01 08:59:10 |
| 2 | 10 | 2024-01-01 09:00:50 |
| 3 | 10 | 2024-01-01 09:02:20 |
| 4 | 20 | 2024-01-01 09:03:00 |
| 5 | 20 | 2024-01-01 09:04:40 |
| 6 | 20 | 2024-01-01 09:10:00 |


🎯 Задача

Напиши SQL-запрос, который определяет реально опоздавших сотрудников, если:

1. Время входа позже 09:00:00
2. Они не шли следом за коллегой из своей команды (разница входа больше 2 минут)
3. Один и тот же сотрудник не может быть "оправдан" несколькими — ищем только ближайшего предыдущего по времени из своей команды

💡 Подсказка: тут нужны:
- оконные функции (`LAG`)
- фильтрация по team_id
- расчёт интервалов времени
- доп. условия на время и порядок

Реальное мышление аналитика начинается там, где бизнес-логика важнее простых фильтров.


Решение:

```sql
WITH logs_with_prev AS (
SELECT
employee_id,
team_id,
entry_time,
LAG(entry_time) OVER (
PARTITION BY team_id
ORDER BY entry_time
) AS prev_entry_time
FROM office_logs
),
marked_late AS (
SELECT
*,
EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) AS seconds_diff
FROM logs_with_prev
)
SELECT
employee_id,
team_id,
entry_time
FROM marked_late
WHERE
entry_time::time > '09:00:00'
AND (
prev_entry_time IS NULL
OR EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) > 120
);
```

🔍 **Что происходит:**
• Сначала `LAG` находит предыдущего входившего из той же команды
• Затем считаем, сколько секунд прошло между входами
• Если прошло больше 2 минут или сотрудник был первым — он **реально опоздал**

📦 Такое решение пригодится, если нужно учитывать **контекст** и **временные связи**, а не просто жёсткие фильтры.

@sqlhub



tg-me.com/sqlhub/1889
Create:
Last Update:

🧠 SQL-задача с подвохом: кто на самом деле опоздал?

У тебя есть таблица с логами входа сотрудников в офис. Но задача не в том, чтобы просто найти "кто пришёл позже 9:00", а выяснить кого стоит считать реально опоздавшим, если учесть такую бизнес-логику:

> Сотрудники входят в офис через турникет. Иногда турникет сканирует пропуск с задержкой, а иногда — несколько сотрудников входят подряд. Поэтому, если кто-то зашёл не позже, чем через 2 минуты после своего коллеги из той же команды — его не считают опоздавшим.

📊 Данные


CREATE TABLE office_logs (
employee_id INT,
team_id INT,
entry_time TIMESTAMP
);


Пример данных:

| employee_id | team_id | entry_time |
|-------------|---------|---------------------|
| 1 | 10 | 2024-01-01 08:59:10 |
| 2 | 10 | 2024-01-01 09:00:50 |
| 3 | 10 | 2024-01-01 09:02:20 |
| 4 | 20 | 2024-01-01 09:03:00 |
| 5 | 20 | 2024-01-01 09:04:40 |
| 6 | 20 | 2024-01-01 09:10:00 |


🎯 Задача

Напиши SQL-запрос, который определяет реально опоздавших сотрудников, если:

1. Время входа позже 09:00:00
2. Они не шли следом за коллегой из своей команды (разница входа больше 2 минут)
3. Один и тот же сотрудник не может быть "оправдан" несколькими — ищем только ближайшего предыдущего по времени из своей команды

💡 Подсказка: тут нужны:
- оконные функции (`LAG`)
- фильтрация по team_id
- расчёт интервалов времени
- доп. условия на время и порядок

Реальное мышление аналитика начинается там, где бизнес-логика важнее простых фильтров.


Решение:

```sql
WITH logs_with_prev AS (
SELECT
employee_id,
team_id,
entry_time,
LAG(entry_time) OVER (
PARTITION BY team_id
ORDER BY entry_time
) AS prev_entry_time
FROM office_logs
),
marked_late AS (
SELECT
*,
EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) AS seconds_diff
FROM logs_with_prev
)
SELECT
employee_id,
team_id,
entry_time
FROM marked_late
WHERE
entry_time::time > '09:00:00'
AND (
prev_entry_time IS NULL
OR EXTRACT(EPOCH FROM (entry_time - prev_entry_time)) > 120
);
```

🔍 **Что происходит:**
• Сначала `LAG` находит предыдущего входившего из той же команды
• Затем считаем, сколько секунд прошло между входами
• Если прошло больше 2 минут или сотрудник был первым — он **реально опоздал**

📦 Такое решение пригодится, если нужно учитывать **контекст** и **временные связи**, а не просто жёсткие фильтры.

@sqlhub

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1889

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Data Science SQL hub from tr


Telegram Data Science. SQL hub
FROM USA