Telegram Group & Telegram Channel
🛠️ История создания “storage-agnostic” message queue


Контекст:
Работая на Go, автор вдохновился инструментами из Node.js экосистемы (BullMQ, RabbitMQ) и захотел сделать что-то похожее, но с нуля, без зависимостей. Так родилась идея — сначала он создал Gocq (Go Concurrent Queue): простую concurrent-очередь, работающую через каналы.

Основная проблема


Gocq отлично работал в памяти, но не поддерживал устойчивое хранение задач.
Автор задумался: а можно ли сделать очередь, не зависящую от конкретного хранилища — так, чтобы её можно было подключить к Redis, SQLite или совсем без них?

🧱 Как это реализовано в VarMQ

После рефакторинга Gocq был разделён на два компонента:
1) Worker pool — пул воркеров, обрабатывающих задачи
2) Queue interface — абстракция над очередью, не зависящая от реализации

Теперь воркер просто берёт задачи из очереди, не зная, где они хранятся.

🧠 Пример использования

• In-memory очередь:


w := varmq.NewVoidWorker(func(data any) {
// обработка задачи
}, 2)
q := w.BindQueue()


• С SQLite-поддержкой:


import "github.com/goptics/sqliteq"

db := sqliteq.New("test.db")
pq, _ := db.NewQueue("orders")
q := w.WithPersistentQueue(pq)


• С Redis (для распределённой обработки):


import "github.com/goptics/redisq"

rdb := redisq.New("redis://localhost:6379")
pq := rdb.NewDistributedQueue("transactions")
q := w.WithDistributedQueue(pq)


В итоге воркер обрабатывает задачи одинаково — независимо от хранилища.

Почему это круто

• Гибкость: адаптеры позволяют легко менять хранилище без правок воркера
• Минимальные зависимости: в яд

📌 Читать



tg-me.com/sqlhub/1887
Create:
Last Update:

🛠️ История создания “storage-agnostic” message queue


Контекст:
Работая на Go, автор вдохновился инструментами из Node.js экосистемы (BullMQ, RabbitMQ) и захотел сделать что-то похожее, но с нуля, без зависимостей. Так родилась идея — сначала он создал Gocq (Go Concurrent Queue): простую concurrent-очередь, работающую через каналы.

Основная проблема


Gocq отлично работал в памяти, но не поддерживал устойчивое хранение задач.
Автор задумался: а можно ли сделать очередь, не зависящую от конкретного хранилища — так, чтобы её можно было подключить к Redis, SQLite или совсем без них?

🧱 Как это реализовано в VarMQ

После рефакторинга Gocq был разделён на два компонента:
1) Worker pool — пул воркеров, обрабатывающих задачи
2) Queue interface — абстракция над очередью, не зависящая от реализации

Теперь воркер просто берёт задачи из очереди, не зная, где они хранятся.

🧠 Пример использования

• In-memory очередь:


w := varmq.NewVoidWorker(func(data any) {
// обработка задачи
}, 2)
q := w.BindQueue()


• С SQLite-поддержкой:


import "github.com/goptics/sqliteq"

db := sqliteq.New("test.db")
pq, _ := db.NewQueue("orders")
q := w.WithPersistentQueue(pq)


• С Redis (для распределённой обработки):


import "github.com/goptics/redisq"

rdb := redisq.New("redis://localhost:6379")
pq := rdb.NewDistributedQueue("transactions")
q := w.WithDistributedQueue(pq)


В итоге воркер обрабатывает задачи одинаково — независимо от хранилища.

Почему это круто

• Гибкость: адаптеры позволяют легко менять хранилище без правок воркера
• Минимальные зависимости: в яд

📌 Читать

BY Data Science. SQL hub




Share with your friend now:
tg-me.com/sqlhub/1887

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Data Science SQL hub from tr


Telegram Data Science. SQL hub
FROM USA