Telegram Group & Telegram Channel
NumPy is a library for scientific computing in Python. It provides tools for working with arrays of data, including functions for mathematical operations, linear algebra, and random number generation.

👉🏻One of the key features of NumPy is its array data structure, which is similar to a list but allows for more efficient mathematical operations on large datasets. NumPy arrays can be created from existing data, such as lists or tuples, using the np.array() function.

👉🏻Once an array has been created, it can be manipulated using various NumPy functions. For example, the np.mean() function can be used to compute the mean of an array, and the np.random.rand() function can be used to generate random numbers.

👉🏻In addition to its array data structure, NumPy also provides a wide range of mathematical functions for working with arrays, such as linear algebra operations, statistical functions, and trigonometric functions. These functions can be applied to arrays element-wise, allowing for efficient computation on large datasets.

Overall, NumPy is a powerful library for working with arrays of data in Python, and is widely used in the fields of scientific computing, data science, and machine learning.

Share and Support
@Python_Codes



tg-me.com/python_codes/261
Create:
Last Update:

NumPy is a library for scientific computing in Python. It provides tools for working with arrays of data, including functions for mathematical operations, linear algebra, and random number generation.

👉🏻One of the key features of NumPy is its array data structure, which is similar to a list but allows for more efficient mathematical operations on large datasets. NumPy arrays can be created from existing data, such as lists or tuples, using the np.array() function.

👉🏻Once an array has been created, it can be manipulated using various NumPy functions. For example, the np.mean() function can be used to compute the mean of an array, and the np.random.rand() function can be used to generate random numbers.

👉🏻In addition to its array data structure, NumPy also provides a wide range of mathematical functions for working with arrays, such as linear algebra operations, statistical functions, and trigonometric functions. These functions can be applied to arrays element-wise, allowing for efficient computation on large datasets.

Overall, NumPy is a powerful library for working with arrays of data in Python, and is widely used in the fields of scientific computing, data science, and machine learning.

Share and Support
@Python_Codes

BY Python Codes


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_codes/261

View MORE
Open in Telegram


Python Codes Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

Python Codes from tr


Telegram Python Codes
FROM USA