Telegram Group & Telegram Channel
Emergent Bartering Behaviour in Multi-Agent Reinforcement Learning [2022] - анкап-симуляции с RL-агентами

Я уже писал про рецепт успешных симуляций жизни в конце этого поста, и похожим образом поступили авторы данной работы. Цель исследования - изучать поведение агентов в различных экономических условиях.

Для этого авторы разработали следующую симуляцию: есть ограниченный 2D-мир, состоящий из травы, воды и деревьев с банами и яблоками. Агенты в среде существуют 2 видов - "яблочные фермеры" и "банановые фермеры". Они, соответственно, умеют хорошо добывать яблоки и бананы с этих деревьев, с вероятностью 100% фрукт успешно добавляется в рюкзак. Если яблочный фермер пытается собрать банан, то у него маленький шанс на успех, как и наоборот. Наград тут несколько:

1) Небольшой штраф за движение, за нахождение в воде
2) У агентов есть "голод", и при достижении 0 он начинает получать штраф каждую секунду. Съедание фрукта восстанавливает голод до 30.
3) Самое интересное - яблочный фермер за съедание банана (и наоборот) получает сильно большую награду, чем за съедание "своего фрукта"

Таким образом, каждый из видов агентов умеет хорошо добывать один вид фруктов, но при этом он хочет есть другой вид. Чтобы создать возможность обмена, авторы добавляют возможность агенту посылать в локальную окрестность "оффер" - вектор [x;-y], который обозначает "хочу x яблок за y бананов". Пространство офферов ограничено всего 18 опциями. Далее автоматически эти офферы обрабатываются и сводятся между собой, затем атомарно совершаются. Помимо этого, конечно, агенты могут ходить, собирать и съедать фрукты.

Запуская такую симуляцию, авторы ожидаемо видят, что агенты пользуются возможностью обмена и специализируются на добыче одного фрукта, выменивая его на другой. Далее авторы проводят огромное количество экспериментов, пытаясь "переоткрыть" базовое микроэкономическое поведение у агентов.

Рассмотрим, например, понятие кривых спроса и предложения. Для них нужно сначала ввести понятие цены товара. В данной задаче ценой считается среднее соотношение товаров во всех совершённых обменах. То есть, если агенты обменивали в половине случаев 1:1, в половине 1:2, то средняя цена будет 0.75.

Напомню про сами эти кривые - кривая предложения, к примеру, яблок показывает, по какой цене яблочные фермеры готовы продавать яблоки в зависимости от количества. Кривая спроса - по какой цене банановые фермеры готовы покупать яблоки при разном их количестве. Их пересечение даёт точку равновесия, наблюдаемую на практике.

Двигая одну из этих кривых, по перемещению точки равновесия можно восстановить другую кривую, таким образом, можно нарисовать настоящие кривые спроса и предложения в этой задаче, чем и занимаются авторы. Они регулируют количество яблочных / банановых деревьев, умножая их вероятность спауна на число, и рисуют точки равновесия. Результаты прикреплены к посту. Кривые, вероятно, зашумлены, но ожидаемая в теории закономерность видна.

В статье приводится огромное количество других подобных экономических экспериментов, интересующимся советую прочитать полный вариант. У такого подхода, есть, конечно, и минус - не всегда получаемое поведение обусловлено внешними условиями, а не тем, что агент тупо не смог сойтись к оптимальной точке. Например, если бы мы задали более элементарное пространство действий, агенты могли бы попросту не научиться совершать обмен, потому что это слишком длинная цепочка элементарных операций. Тем не менее, игрушка интересная.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/213
Create:
Last Update:

Emergent Bartering Behaviour in Multi-Agent Reinforcement Learning [2022] - анкап-симуляции с RL-агентами

Я уже писал про рецепт успешных симуляций жизни в конце этого поста, и похожим образом поступили авторы данной работы. Цель исследования - изучать поведение агентов в различных экономических условиях.

Для этого авторы разработали следующую симуляцию: есть ограниченный 2D-мир, состоящий из травы, воды и деревьев с банами и яблоками. Агенты в среде существуют 2 видов - "яблочные фермеры" и "банановые фермеры". Они, соответственно, умеют хорошо добывать яблоки и бананы с этих деревьев, с вероятностью 100% фрукт успешно добавляется в рюкзак. Если яблочный фермер пытается собрать банан, то у него маленький шанс на успех, как и наоборот. Наград тут несколько:

1) Небольшой штраф за движение, за нахождение в воде
2) У агентов есть "голод", и при достижении 0 он начинает получать штраф каждую секунду. Съедание фрукта восстанавливает голод до 30.
3) Самое интересное - яблочный фермер за съедание банана (и наоборот) получает сильно большую награду, чем за съедание "своего фрукта"

Таким образом, каждый из видов агентов умеет хорошо добывать один вид фруктов, но при этом он хочет есть другой вид. Чтобы создать возможность обмена, авторы добавляют возможность агенту посылать в локальную окрестность "оффер" - вектор [x;-y], который обозначает "хочу x яблок за y бананов". Пространство офферов ограничено всего 18 опциями. Далее автоматически эти офферы обрабатываются и сводятся между собой, затем атомарно совершаются. Помимо этого, конечно, агенты могут ходить, собирать и съедать фрукты.

Запуская такую симуляцию, авторы ожидаемо видят, что агенты пользуются возможностью обмена и специализируются на добыче одного фрукта, выменивая его на другой. Далее авторы проводят огромное количество экспериментов, пытаясь "переоткрыть" базовое микроэкономическое поведение у агентов.

Рассмотрим, например, понятие кривых спроса и предложения. Для них нужно сначала ввести понятие цены товара. В данной задаче ценой считается среднее соотношение товаров во всех совершённых обменах. То есть, если агенты обменивали в половине случаев 1:1, в половине 1:2, то средняя цена будет 0.75.

Напомню про сами эти кривые - кривая предложения, к примеру, яблок показывает, по какой цене яблочные фермеры готовы продавать яблоки в зависимости от количества. Кривая спроса - по какой цене банановые фермеры готовы покупать яблоки при разном их количестве. Их пересечение даёт точку равновесия, наблюдаемую на практике.

Двигая одну из этих кривых, по перемещению точки равновесия можно восстановить другую кривую, таким образом, можно нарисовать настоящие кривые спроса и предложения в этой задаче, чем и занимаются авторы. Они регулируют количество яблочных / банановых деревьев, умножая их вероятность спауна на число, и рисуют точки равновесия. Результаты прикреплены к посту. Кривые, вероятно, зашумлены, но ожидаемая в теории закономерность видна.

В статье приводится огромное количество других подобных экономических экспериментов, интересующимся советую прочитать полный вариант. У такого подхода, есть, конечно, и минус - не всегда получаемое поведение обусловлено внешними условиями, а не тем, что агент тупо не смог сойтись к оптимальной точке. Например, если бы мы задали более элементарное пространство действий, агенты могли бы попросту не научиться совершать обмен, потому что это слишком длинная цепочка элементарных операций. Тем не менее, игрушка интересная.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/213

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

Knowledge Accumulator from tw


Telegram Knowledge Accumulator
FROM USA