Telegram Group & Telegram Channel
Efficiently Modeling Long Sequences with Structured State Spaces [2021] - как дотер стал нейросетью

Для тех, кто не знает - я не особый любитель длинных математических статей. В целом, я не умею с адекватной скоростью читать и воспринимать много линала. Наверняка в телеграме существует большое количество умных постов про S4 с кратким пересказом его математики, и если вы из тех, кто способен такое воспринимать, поздравляю - данный пост не для вас.

Я постарался, вооружившись гайдом, уловить основной смысл данной архитектуры, где она находится по отношению с известными широким кругам. Итак, поехали.

Представим, что существует "ячейка памяти" - хранилище-вектор, который обновляется с учётом предыдущего состояния ячейки, последнего входа и каких-то обучаемых параметров. Помимо памяти есть функция выхода, которая берёт новое состояние памяти, последний вход и выдаёт выход наружу.

Мы уже знаем реализации подобных абстракций. Простейшая RNN, GRU/LSTM - все мы их любим, но у них есть жирная проблема - их нужно считать шаг за шагом, а значит, нельзя применить много компьюта и обработать кучу информации за раз, так, как это умеют трансформеры, но сами трансформеры фэйлятся на огромных контекстах.

Итак, помимо RNN и GRU существует State Space Model - ещё один формат ячейки памяти (в его основе всего лишь парочка матричных умножений), но у него есть крутая особенность. Вычисление рода "прогнать SSM на последовательности", оказывается, можно переформулировать в другую функцию - свёртку, для которой можно предпосчитать веса. При добавлении ещё одного фокуса (FFT) эту свёртку можно считать быстрее, чем втупую, что в итоге позволяет по сути быстро применять SSM на всей последовательности.

Далее, у SSM есть 2 проблемы - они херово работают, и хвалёное "быстро посчитать" на самом деле не такое уж и быстрое.

Чтобы решить первое, был придуман магический гиппопотам - инициализация одной из матриц внутри SSM таким образом, чтобы она была изначально ближе к пространству чего-то разумного.

Вкратце, вторая проблема заключается в том, что для подсчёта весов свёртки нужно умножать много матриц, а нам вообще-то лень - бумага нынче дорогая. Для этого придумывают магический костыль - Diagonal Plus Low-Rank. Я не стал разбираться в деталях, если вам интересно, отсылаю к разбору, но одну из матриц просто (нихера не просто в реальности) представляют не как обучаемую матрицу весов, а как результат операций над другими обучаемыми сущностями.

В результате, объединив описанные хаки, и получается S4 - хитрая и быстрая вариация "RNN"-ки, которую успешно применяют на сверхдлинных последовательностях.

Замечу, что это не первая статья, которую я обозреваю, в которой засчёт убирания нелинейностей удаётся всё очень сильно ускорить и упростить - напомню про RetNet. Нет никаких гарантий, что "мощность" архитектуры достигается как раз засчёт этих нелинейностей.

Кроме того, скажу честно - я банально не верю, что прорывные архитектуры будут основаны на какой-то сложной математике. Через пару лет окажется, что есть какая-нибудь суперпростая штука, которая делает всё то же самое даже лучше. Это не исключает, что математика будет вдохновлять на прогресс и в какой-то момент натолкнёт ресёрчеров на нечто крутое, но само это крутое будет очень простым.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/223
Create:
Last Update:

Efficiently Modeling Long Sequences with Structured State Spaces [2021] - как дотер стал нейросетью

Для тех, кто не знает - я не особый любитель длинных математических статей. В целом, я не умею с адекватной скоростью читать и воспринимать много линала. Наверняка в телеграме существует большое количество умных постов про S4 с кратким пересказом его математики, и если вы из тех, кто способен такое воспринимать, поздравляю - данный пост не для вас.

Я постарался, вооружившись гайдом, уловить основной смысл данной архитектуры, где она находится по отношению с известными широким кругам. Итак, поехали.

Представим, что существует "ячейка памяти" - хранилище-вектор, который обновляется с учётом предыдущего состояния ячейки, последнего входа и каких-то обучаемых параметров. Помимо памяти есть функция выхода, которая берёт новое состояние памяти, последний вход и выдаёт выход наружу.

Мы уже знаем реализации подобных абстракций. Простейшая RNN, GRU/LSTM - все мы их любим, но у них есть жирная проблема - их нужно считать шаг за шагом, а значит, нельзя применить много компьюта и обработать кучу информации за раз, так, как это умеют трансформеры, но сами трансформеры фэйлятся на огромных контекстах.

Итак, помимо RNN и GRU существует State Space Model - ещё один формат ячейки памяти (в его основе всего лишь парочка матричных умножений), но у него есть крутая особенность. Вычисление рода "прогнать SSM на последовательности", оказывается, можно переформулировать в другую функцию - свёртку, для которой можно предпосчитать веса. При добавлении ещё одного фокуса (FFT) эту свёртку можно считать быстрее, чем втупую, что в итоге позволяет по сути быстро применять SSM на всей последовательности.

Далее, у SSM есть 2 проблемы - они херово работают, и хвалёное "быстро посчитать" на самом деле не такое уж и быстрое.

Чтобы решить первое, был придуман магический гиппопотам - инициализация одной из матриц внутри SSM таким образом, чтобы она была изначально ближе к пространству чего-то разумного.

Вкратце, вторая проблема заключается в том, что для подсчёта весов свёртки нужно умножать много матриц, а нам вообще-то лень - бумага нынче дорогая. Для этого придумывают магический костыль - Diagonal Plus Low-Rank. Я не стал разбираться в деталях, если вам интересно, отсылаю к разбору, но одну из матриц просто (нихера не просто в реальности) представляют не как обучаемую матрицу весов, а как результат операций над другими обучаемыми сущностями.

В результате, объединив описанные хаки, и получается S4 - хитрая и быстрая вариация "RNN"-ки, которую успешно применяют на сверхдлинных последовательностях.

Замечу, что это не первая статья, которую я обозреваю, в которой засчёт убирания нелинейностей удаётся всё очень сильно ускорить и упростить - напомню про RetNet. Нет никаких гарантий, что "мощность" архитектуры достигается как раз засчёт этих нелинейностей.

Кроме того, скажу честно - я банально не верю, что прорывные архитектуры будут основаны на какой-то сложной математике. Через пару лет окажется, что есть какая-нибудь суперпростая штука, которая делает всё то же самое даже лучше. Это не исключает, что математика будет вдохновлять на прогресс и в какой-то момент натолкнёт ресёрчеров на нечто крутое, но само это крутое будет очень простым.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/223

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Knowledge Accumulator from tw


Telegram Knowledge Accumulator
FROM USA