Telegram Group & Telegram Channel
Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/51
Create:
Last Update:

Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/51

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Knowledge Accumulator from tw


Telegram Knowledge Accumulator
FROM USA