Telegram Group & Telegram Channel
Как параметризовать алгоритм обучения?

По всей видимости, мне нужно более понятно раскрыть эту тему, поскольку один из постов выше не вызвал никакого обсуждения, хотя, мне кажется, тема-то очень важная и интересная.

Итак, представим, что у нас есть система, обучающаяся чему-либо, например, классификации картинок. Чтобы оптимизировать обучаемость системы, нам нужно какое-то пространство для оптимизации, в котором мы будем изменять наши параметры в поиске лучшего алгоритма.

Самый известный способ параметризовать такой алгоритм - это программа на питоне, задающая архитектуру нейросети, трейнлуп, подсчёт ошибки и так далее. Оптимизацию в этом пространстве проводит человек почти вручную в рамках технологического прогресса. У этого есть 2 минуса:
1) Человечество - не самый лучший оптимизатор. Представьте, как если бы оно пыталось написать программу на питоне, которая берёт картинку и классифицирует по классам кошка/собака, без нейросетей.
2) Пространство "параметров" слишком структурировано. Человеческий интеллект задаёт ограничение на пространство алгоритмов, и то, что алгоритм состоит из длинной последовательности дискретных инструкций, в которой почти любая ошибка приводит к полной катастрофе, сильно затрудняет нам его оптимизацию автоматическими алгоритмами (например, генетическими). Иногда удаётся оптимизировать короткие программы, используя безумные ресурсы, как, например, в AutoMLZero, про который я писал пост.

Альтернативный способ параметризовать обучение системы - это, конечно же, ДНК. В нём закодировано поведение элементарной частицы, её деление, взаимодействие со своими копиями. Тот факт, что каждый кусочек ДНК влияет в разной степени на всю систему, не обязательно вызывая полный крах, и позволил эволюции оптимизировать адаптируемость человека к внешним вызовам, т.е. в том числе интеллект.

Как же я был приятно удивлён, когда обнаружил, что я не одинок в этих рассуждениях! Я нашёл статью, в которой авторы полностью переизобретают нейросети, не побоюсь этой фразы, и реально достигают успеха в мета-обучении. Об этом в следующем посте.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/82
Create:
Last Update:

Как параметризовать алгоритм обучения?

По всей видимости, мне нужно более понятно раскрыть эту тему, поскольку один из постов выше не вызвал никакого обсуждения, хотя, мне кажется, тема-то очень важная и интересная.

Итак, представим, что у нас есть система, обучающаяся чему-либо, например, классификации картинок. Чтобы оптимизировать обучаемость системы, нам нужно какое-то пространство для оптимизации, в котором мы будем изменять наши параметры в поиске лучшего алгоритма.

Самый известный способ параметризовать такой алгоритм - это программа на питоне, задающая архитектуру нейросети, трейнлуп, подсчёт ошибки и так далее. Оптимизацию в этом пространстве проводит человек почти вручную в рамках технологического прогресса. У этого есть 2 минуса:
1) Человечество - не самый лучший оптимизатор. Представьте, как если бы оно пыталось написать программу на питоне, которая берёт картинку и классифицирует по классам кошка/собака, без нейросетей.
2) Пространство "параметров" слишком структурировано. Человеческий интеллект задаёт ограничение на пространство алгоритмов, и то, что алгоритм состоит из длинной последовательности дискретных инструкций, в которой почти любая ошибка приводит к полной катастрофе, сильно затрудняет нам его оптимизацию автоматическими алгоритмами (например, генетическими). Иногда удаётся оптимизировать короткие программы, используя безумные ресурсы, как, например, в AutoMLZero, про который я писал пост.

Альтернативный способ параметризовать обучение системы - это, конечно же, ДНК. В нём закодировано поведение элементарной частицы, её деление, взаимодействие со своими копиями. Тот факт, что каждый кусочек ДНК влияет в разной степени на всю систему, не обязательно вызывая полный крах, и позволил эволюции оптимизировать адаптируемость человека к внешним вызовам, т.е. в том числе интеллект.

Как же я был приятно удивлён, когда обнаружил, что я не одинок в этих рассуждениях! Я нашёл статью, в которой авторы полностью переизобретают нейросети, не побоюсь этой фразы, и реально достигают успеха в мета-обучении. Об этом в следующем посте.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/82

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

Knowledge Accumulator from tw


Telegram Knowledge Accumulator
FROM USA