Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1836
Create:
Last Update:

🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1836

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

Machine learning Interview from tw


Telegram Machine learning Interview
FROM USA