Telegram Group & Telegram Channel
🌟 Esoteric Language Models: гибридные AR+MDM языковые модели.

Eso-LM - это новый класс языковых моделей, сочетающий автогрегрессионные (AR) и маскированные диффузионные методы (MDM), чтобы сбалансировать качество генерации и скорость работы.

Основная идея состоит в том, чтобы устранить слабые места обеих технологий: медленное выполнение AR-моделей и низкую эффективность MDM при сохранении их ключевых преимуществ - параллелизма.

Архитектура строится на гибридной функции потерь, которая одновременно обучает модель как AR-генератору, так и MDM-декодеру. Это достигается через модифицированный механизм внимания, который динамически переключается между причинным (для AR-фазы) и двусторонним (для MDM-фазы) режимами.

В отличие от классических MDM, Eso-LM использует разреженные матрицы внимания, позволяя кэшировать KV даже во время диффузионного этапа. Эта техника ощутимо сокращает вычислительную нагрузку за счет обработки только тех токенов, которые нужно «демаскировать» на каждом шаге.

Процесс генерации разбит на 2 стадии:

🟢На этапе диффузии модель последовательно раскрывает часть маскированных токенов, используя оптимизированный шедулер, который минимизирует количество проходов через сеть.

🟢На автогрегрессионной фазе, оставшиеся токены дополняются слева направо, с опорой на уже сгенерированный контекст.

Обе стадии используют единый KV-кэш, что исключает повторные вычисления и ускоряет работу в разы. В итоге, для длинных последовательностей (8192 токена), Eso-LM работает в 65 раз быстрее, чем стандартные MDM.

Экспериментальные модели обучали на сетах LM1B (1 млрд. слов) и OpenWebText с использованием токенизаторов BERT и GPT-2 соответственно.

Тесты показали, что Eso-LM не только улучшает скорость, но и устраняет «модовое коллапсирование» (деградацию качества при малом числе шагов), характерное для предыдущих решений (BD3-LM).

На наборе OWT модель достигла уровня perplexity 21.87 при высокой скорости генерации, оставаясь конкурентоспособной как с MDM, так и с AR-моделями.

▶️ Разработчики, а это совместный проект Cornell University, NVIDIA и MBZUAI, опубликовали код для инференса, обучения и оценки Eso-LM в репозитории на Github и веса экспериментальных моделей:

🟠Eso-LM(B)-alpha-1 - чистый MDM с максимальной скоростью, но меньшим качеством;

🟠Eso-LM(B)-alpha-0.25 - баланс между MDM и AR, в которой пожертвовали частью скорости ради перплексии и стабильности.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #EsoLM #HybridModel
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7716
Create:
Last Update:

🌟 Esoteric Language Models: гибридные AR+MDM языковые модели.

Eso-LM - это новый класс языковых моделей, сочетающий автогрегрессионные (AR) и маскированные диффузионные методы (MDM), чтобы сбалансировать качество генерации и скорость работы.

Основная идея состоит в том, чтобы устранить слабые места обеих технологий: медленное выполнение AR-моделей и низкую эффективность MDM при сохранении их ключевых преимуществ - параллелизма.

Архитектура строится на гибридной функции потерь, которая одновременно обучает модель как AR-генератору, так и MDM-декодеру. Это достигается через модифицированный механизм внимания, который динамически переключается между причинным (для AR-фазы) и двусторонним (для MDM-фазы) режимами.

В отличие от классических MDM, Eso-LM использует разреженные матрицы внимания, позволяя кэшировать KV даже во время диффузионного этапа. Эта техника ощутимо сокращает вычислительную нагрузку за счет обработки только тех токенов, которые нужно «демаскировать» на каждом шаге.

Процесс генерации разбит на 2 стадии:

🟢На этапе диффузии модель последовательно раскрывает часть маскированных токенов, используя оптимизированный шедулер, который минимизирует количество проходов через сеть.

🟢На автогрегрессионной фазе, оставшиеся токены дополняются слева направо, с опорой на уже сгенерированный контекст.

Обе стадии используют единый KV-кэш, что исключает повторные вычисления и ускоряет работу в разы. В итоге, для длинных последовательностей (8192 токена), Eso-LM работает в 65 раз быстрее, чем стандартные MDM.

Экспериментальные модели обучали на сетах LM1B (1 млрд. слов) и OpenWebText с использованием токенизаторов BERT и GPT-2 соответственно.

Тесты показали, что Eso-LM не только улучшает скорость, но и устраняет «модовое коллапсирование» (деградацию качества при малом числе шагов), характерное для предыдущих решений (BD3-LM).

На наборе OWT модель достигла уровня perplexity 21.87 при высокой скорости генерации, оставаясь конкурентоспособной как с MDM, так и с AR-моделями.

▶️ Разработчики, а это совместный проект Cornell University, NVIDIA и MBZUAI, опубликовали код для инференса, обучения и оценки Eso-LM в репозитории на Github и веса экспериментальных моделей:

🟠Eso-LM(B)-alpha-1 - чистый MDM с максимальной скоростью, но меньшим качеством;

🟠Eso-LM(B)-alpha-0.25 - баланс между MDM и AR, в которой пожертвовали частью скорости ради перплексии и стабильности.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #EsoLM #HybridModel

BY Machinelearning







Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7716

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Machinelearning from tw


Telegram Machinelearning
FROM USA