Telegram Group & Telegram Channel
آقای Sebastian Raschka بلاگ پستی درباره Reasoning در LLM-ها نوشته. در ادامه خلاصه‌ای از این پست رو آوردم. هرچند پیشنهاد میشه که پست کامل خونده بشه. لینک


قبل از DeepSeek-R1، تقویت توانایی استدلال (Reasoning) در مدل‌ها معمولا مبتنی بر فاین‌تیون باناظر و یادگیری تقویتی (SFT+RL) بود. به این شکل که بعد از مرحله Pretrain، مدل‌ها ابتدا با یادگیری باناظر و سپس با یادگیری تقویتی آموزش داده میشدن تا قابلیت استدلال بهبود پیدا کند.

با اومدن DeepSeek-R1، روش‌های کارآمد دیگه‌ای هم برای افزایش توانایی استدلال در مدل‌ها معرفی شد:
* روش فقط یادگیری تقویتی (Pure RL)
* روش فقط یادگیری باناظر (Pure SFT)

در روش Pure RL، مدل DeepSeek-R1-Zero توسعه داده شد. در این روش، به جای استفاده از فیدبک انسانی، دو Reward به نام‌های Accuracy و Format تعریف شدن. برای مثال، در پرامپت‌ها و سوال‌های کدنویسی، Accuracy Reward بر اساس تست‌کیس‌ها و کامپایلر LeetCode تعیین میشه. یعنی مدل کد تولید میکنه، کامپایلر بررسی کرده و بر اساس صحت خروجی، به مدل فیدبک میده. 👏

این روش Pure RL باعث شد که مدل بدون نیاز به فیدبک انسانی توانایی استدلالش ارتقا پیدا کنه؛ یک دستاورد کلیدی که احتمالا در ماه‌های آینده بیشتر در موردش خواهیم شنید. تصویر بالا نشون میده DeepSeek-R1-Zero که فقط با RL آموزش دیده، چگونه یک مسئله ریاضی رو حل میکنه.

روش دوم، فقط یادگیری باناظر (SFT) هست. دیپ‌سیک یک‌ سری مدل کوچک‌تر بر پایه Llama 3 و Qwen 2.5 رو با SFT آموزش داد و جالب اینکه حتی این مدل‌ها هم تنها با SFT قابلیت استدلال پیدا کردند.

البته، وقتی مدل‌های کوچک رو با روش Pure RL آموزش دادن، عملکرد چندان جالبی نداشتن. این نشون میده که مدل‌های بزرگ‌تر (مثل DeepSeek-V3) می‌تونن با Pure RL قابلیت استدلال پیدا کنند، در حالی که مدل‌های کوچک‌تر بیشتر با Pure SFT به این توانایی می‌رسن.
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pytorch_howsam/640
Create:
Last Update:

آقای Sebastian Raschka بلاگ پستی درباره Reasoning در LLM-ها نوشته. در ادامه خلاصه‌ای از این پست رو آوردم. هرچند پیشنهاد میشه که پست کامل خونده بشه. لینک


قبل از DeepSeek-R1، تقویت توانایی استدلال (Reasoning) در مدل‌ها معمولا مبتنی بر فاین‌تیون باناظر و یادگیری تقویتی (SFT+RL) بود. به این شکل که بعد از مرحله Pretrain، مدل‌ها ابتدا با یادگیری باناظر و سپس با یادگیری تقویتی آموزش داده میشدن تا قابلیت استدلال بهبود پیدا کند.

با اومدن DeepSeek-R1، روش‌های کارآمد دیگه‌ای هم برای افزایش توانایی استدلال در مدل‌ها معرفی شد:
* روش فقط یادگیری تقویتی (Pure RL)
* روش فقط یادگیری باناظر (Pure SFT)

در روش Pure RL، مدل DeepSeek-R1-Zero توسعه داده شد. در این روش، به جای استفاده از فیدبک انسانی، دو Reward به نام‌های Accuracy و Format تعریف شدن. برای مثال، در پرامپت‌ها و سوال‌های کدنویسی، Accuracy Reward بر اساس تست‌کیس‌ها و کامپایلر LeetCode تعیین میشه. یعنی مدل کد تولید میکنه، کامپایلر بررسی کرده و بر اساس صحت خروجی، به مدل فیدبک میده. 👏

این روش Pure RL باعث شد که مدل بدون نیاز به فیدبک انسانی توانایی استدلالش ارتقا پیدا کنه؛ یک دستاورد کلیدی که احتمالا در ماه‌های آینده بیشتر در موردش خواهیم شنید. تصویر بالا نشون میده DeepSeek-R1-Zero که فقط با RL آموزش دیده، چگونه یک مسئله ریاضی رو حل میکنه.

روش دوم، فقط یادگیری باناظر (SFT) هست. دیپ‌سیک یک‌ سری مدل کوچک‌تر بر پایه Llama 3 و Qwen 2.5 رو با SFT آموزش داد و جالب اینکه حتی این مدل‌ها هم تنها با SFT قابلیت استدلال پیدا کردند.

البته، وقتی مدل‌های کوچک رو با روش Pure RL آموزش دادن، عملکرد چندان جالبی نداشتن. این نشون میده که مدل‌های بزرگ‌تر (مثل DeepSeek-V3) می‌تونن با Pure RL قابلیت استدلال پیدا کنند، در حالی که مدل‌های کوچک‌تر بیشتر با Pure SFT به این توانایی می‌رسن.

BY PyTorch Howsam




Share with your friend now:
tg-me.com/pytorch_howsam/640

View MORE
Open in Telegram


PyTorch Howsam Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

PyTorch Howsam from tw


Telegram PyTorch Howsam
FROM USA