Telegram Group & Telegram Channel
🧠 SQL-задача с подвохом: "Невидимые дубликаты"

В таблице users хранятся email-адреса пользователей. Некоторые юзеры регистрируются повторно, маскируя один и тот же email по-разному:

| id | name | email |
|----|----------|--------------------------|
| 1 | Alice | [email protected] |
| 2 | Bob | [email protected] |
| 3 | Charlie | [email protected] |
| 4 | Dave | [email protected] |
| 5 | Eve | [email protected] |


🎯 Цель:
Найти количество уникальных пользователей, если:
- Регистр не учитывается (`alice` = `ALICE`)
- Пробелы игнорируются
- Для @gmail.com:
— Убираются точки в имени
— Всё после + отрезается

SQL-решение:


SELECT COUNT(DISTINCT normalized_email) AS unique_users
FROM (
SELECT
CASE
WHEN email ILIKE '%@gmail.com' THEN
REGEXP_REPLACE(
SPLIT_PART(SPLIT_PART(LOWER(TRIM(email)), '+', 1), '@', 1),
'\.', '', 'g'
) || '@gmail.com'
ELSE
LOWER(REPLACE(TRIM(email), ' ', ''))
END AS normalized_email
FROM users
) AS cleaned;


🔍 Как это работает:

LOWER(TRIM(email)) — убираем пробелы и регистр

SPLIT_PART(..., '+', 1) — отрезаем всё после +

REGEXP_REPLACE(..., '\.', '', 'g') — удаляем точки

Считаем DISTINCT, чтобы получить число уникальных email'ов

🔥 Используй такие трюки для:
• антифрода
• чистки базы
• аналитики поведения пользователей

#SQL #PostgreSQL #Gmail #EmailNormalization #DevTools #AntiFraud #DataCleaning #Analytics



tg-me.com/sqlhub/1904
Create:
Last Update:

🧠 SQL-задача с подвохом: "Невидимые дубликаты"

В таблице users хранятся email-адреса пользователей. Некоторые юзеры регистрируются повторно, маскируя один и тот же email по-разному:

| id | name | email |
|----|----------|--------------------------|
| 1 | Alice | [email protected] |
| 2 | Bob | [email protected] |
| 3 | Charlie | [email protected] |
| 4 | Dave | [email protected] |
| 5 | Eve | [email protected] |


🎯 Цель:
Найти количество уникальных пользователей, если:
- Регистр не учитывается (`alice` = `ALICE`)
- Пробелы игнорируются
- Для @gmail.com:
— Убираются точки в имени
— Всё после + отрезается

SQL-решение:


SELECT COUNT(DISTINCT normalized_email) AS unique_users
FROM (
SELECT
CASE
WHEN email ILIKE '%@gmail.com' THEN
REGEXP_REPLACE(
SPLIT_PART(SPLIT_PART(LOWER(TRIM(email)), '+', 1), '@', 1),
'\.', '', 'g'
) || '@gmail.com'
ELSE
LOWER(REPLACE(TRIM(email), ' ', ''))
END AS normalized_email
FROM users
) AS cleaned;


🔍 Как это работает:

LOWER(TRIM(email)) — убираем пробелы и регистр

SPLIT_PART(..., '+', 1) — отрезаем всё после +

REGEXP_REPLACE(..., '\.', '', 'g') — удаляем точки

Считаем DISTINCT, чтобы получить число уникальных email'ов

🔥 Используй такие трюки для:
• антифрода
• чистки базы
• аналитики поведения пользователей

#SQL #PostgreSQL #Gmail #EmailNormalization #DevTools #AntiFraud #DataCleaning #Analytics

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1904

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Data Science SQL hub from ua


Telegram Data Science. SQL hub
FROM USA