Telegram Group & Telegram Channel
⚙️ Полный гид по GPU-экосистеме — без воды и маркетинга

Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.

🧠 Что ты узнаешь:

🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
 — CUDA и его аналоги (HIP, SYCL, OpenCL)
 — Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность

📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана

📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/

🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.

#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing



tg-me.com/machinelearning_interview/1818
Create:
Last Update:

⚙️ Полный гид по GPU-экосистеме — без воды и маркетинга

Если ты путаешься в CUDA, OpenCL, SYCL и HIP — этот гайд от ENCCS расставит всё по полочкам. Это не просто обзор, а чёткое объяснение, как устроен мир GPU-программирования сегодня.

🧠 Что ты узнаешь:

🔹 Как и почему GPU радикально отличается от CPU
🔹 Из чего состоит стек GPU-технологий:
 — CUDA и его аналоги (HIP, SYCL, OpenCL)
 — Директивы: OpenMP, OpenACC
🔹 Какие языки и стандарты поддерживают какую архитектуру
🔹 NVIDIA, AMD, Intel — кто что умеет и чем отличается
🔹 Модели памяти, исполнения, и что влияет на производительность

📌 Гайд подходит для:
• Разработчиков HPC и научных расчётов
• Инженеров ML/AI, желающих копнуть глубже
• Всех, кто хочет разобраться в низкоуровневом GPU-стеке без маркетингового тумана

📖 Читать:
https://enccs.github.io/gpu-programming/2-gpu-ecosystem/

🔥 Один из самых понятных и системных разборов GPU-мира на сегодня.

#GPU #CUDA #OpenCL #HIP #SYCL #HPC #AI #HighPerformanceComputing

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1818

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Machine learning Interview from ua


Telegram Machine learning Interview
FROM USA