Telegram Group & Telegram Channel
بحر در کوزه این بار با HF!

احتمالا تا حالا شده که در مسیر تسک‌های NLP به دیوار سخت و خشن یک دیتاست بزرگ برخورده باشید (مثلا یک دیتاست در اندازه چند ده گیگابایت که شاید حتی جایی برای ذخیره‌سازیش در دیسک نداشته باشید چه برسه به رم). در این حالته که دست‌ها رو به نشانه تسلیم بالا می‌برید. اما هاگینگ‌فیس در کتابخانه Datasets🤗 این مشکل رو حل کرده. در واقع با دو قابلیت memory mapping و streaming که این کتابخانه فراهم کرده بر محدودیت رم و دیسک غلبه می‌کنید. قابلیت memory mapping (که به صورت پیش‌فرض فعاله) به این اشاره داره که با لودکردن هر دیتاستی توسط Datasets🤗 این کتابخانه یه سری cache file از دیتاست می‌سازه که بر روی دیسک ذخیره شدند و عینا همون محتویات دیتاست لود‌شده در RAM هستند. پس یه جور آیینه تمام‌نمای RAM محسوب می‌شه و از این جا به بعد دیگه این کتابخانه یه اشاره‌گر به اول این فایل باز می‌کنه و دیتا به صورت batch داخل رم لود میشه. طبیعتا آموزش مدل از اینجا به بعد I/O bounded خواهد بود اما نگران اون قسمتش هم نباشید چون فرمتی که برای کار با این فایل‌ها استفاده می‌کنه Apache Arrow هست که یه فرمت بهینه‌شده است. از طرفی برای اینکه نعمت رو بر ما تکمیل کرده باشه و حتی نگران کمبود دیسک هم نباشیم قابلیت streaming رو تعریف کرده که ینی می‌تونید از هاب دیتاست هاگینگ‌فیس، دیتاست رو به صورت batch و on the fly دانلود کنید و پردازش انجام بدید (که به صورت پیش‌فرض فعال نیست و باید streaming=True باشه). البته با استفاده از این قابلیت امکان random access به دیتاها رو از دست می‌دید (مثلا نمی‌تونید دستور dataset[2335] رو ران کنید چون آبجکتی که می‌سازه حالت iterable داره و شبیه generatorهای پایتونیه) ولی با دستور next و iterate کردن بر روی دیتاست، دقیقا سمپل‌های یک دیتاست استریم‌نشده رو می‌گیرید. پس دیگه بهونه بسه و پاشید کار با دیتاست‌های بزرگ رو شروع کنید.

پ.ن: در تصاویر یه سری نمونه کد‌هایی آوردیم که از فصل ۱۰ کتاب گران‌سنگ NLP with Transformers گرفته شده که اثری جاوید از هاگینگ‌فیسه.

#handsOn

@nlp_stuff



tg-me.com/nlp_stuff/310
Create:
Last Update:

بحر در کوزه این بار با HF!

احتمالا تا حالا شده که در مسیر تسک‌های NLP به دیوار سخت و خشن یک دیتاست بزرگ برخورده باشید (مثلا یک دیتاست در اندازه چند ده گیگابایت که شاید حتی جایی برای ذخیره‌سازیش در دیسک نداشته باشید چه برسه به رم). در این حالته که دست‌ها رو به نشانه تسلیم بالا می‌برید. اما هاگینگ‌فیس در کتابخانه Datasets🤗 این مشکل رو حل کرده. در واقع با دو قابلیت memory mapping و streaming که این کتابخانه فراهم کرده بر محدودیت رم و دیسک غلبه می‌کنید. قابلیت memory mapping (که به صورت پیش‌فرض فعاله) به این اشاره داره که با لودکردن هر دیتاستی توسط Datasets🤗 این کتابخانه یه سری cache file از دیتاست می‌سازه که بر روی دیسک ذخیره شدند و عینا همون محتویات دیتاست لود‌شده در RAM هستند. پس یه جور آیینه تمام‌نمای RAM محسوب می‌شه و از این جا به بعد دیگه این کتابخانه یه اشاره‌گر به اول این فایل باز می‌کنه و دیتا به صورت batch داخل رم لود میشه. طبیعتا آموزش مدل از اینجا به بعد I/O bounded خواهد بود اما نگران اون قسمتش هم نباشید چون فرمتی که برای کار با این فایل‌ها استفاده می‌کنه Apache Arrow هست که یه فرمت بهینه‌شده است. از طرفی برای اینکه نعمت رو بر ما تکمیل کرده باشه و حتی نگران کمبود دیسک هم نباشیم قابلیت streaming رو تعریف کرده که ینی می‌تونید از هاب دیتاست هاگینگ‌فیس، دیتاست رو به صورت batch و on the fly دانلود کنید و پردازش انجام بدید (که به صورت پیش‌فرض فعال نیست و باید streaming=True باشه). البته با استفاده از این قابلیت امکان random access به دیتاها رو از دست می‌دید (مثلا نمی‌تونید دستور dataset[2335] رو ران کنید چون آبجکتی که می‌سازه حالت iterable داره و شبیه generatorهای پایتونیه) ولی با دستور next و iterate کردن بر روی دیتاست، دقیقا سمپل‌های یک دیتاست استریم‌نشده رو می‌گیرید. پس دیگه بهونه بسه و پاشید کار با دیتاست‌های بزرگ رو شروع کنید.

پ.ن: در تصاویر یه سری نمونه کد‌هایی آوردیم که از فصل ۱۰ کتاب گران‌سنگ NLP with Transformers گرفته شده که اثری جاوید از هاگینگ‌فیسه.

#handsOn

@nlp_stuff

BY NLP stuff




Share with your friend now:
tg-me.com/nlp_stuff/310

View MORE
Open in Telegram


NLP stuff Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

NLP stuff from ua


Telegram NLP stuff
FROM USA