Telegram Group & Telegram Channel
Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/139
Create:
Last Update:

Весёлый поиск от Deepmind [2023]

Новость про "первое открытие LLM в математике" взбудоражило публику. Статья очень интересная, но её стоит воспринимать в широком контексте, который я и постараюсь дать.

Есть такая сфера, как оптимизация/поиск программ - мы задаём набор базовых команд и ищем их последовательность, дающую максимальный профит на задаче. Я уже разбирал AutoML-Zero, в которой ищут последовательность векторно-матричных операций, максимизирующую точность нейросети, обученной с её помощью. Тот же подход использовали для создания оптимизатора Lion.

Работает это всё в форме генетического алгоритма. Мы можем легко оценить качество конкретной программы, и у нас есть популяция программ, из которых пробуем создавать новые программы с помощью мутаций. В AutoML-Zero / Lion мутации были случайные - мы добавляли / изменяли / удаляли случайную команду в ней. А это слишком неэффективно и глупо.

Новизна FunSearch именно в том, что авторы нашли способ генерировать мутации сильно лучше, чем рандомно - как раз с помощью LLM. Модели на вход подают контекст задачи и две уже существующие программы, и просят "придумать на их основе более удачную" - это по факту просьба "скрести и добавь мутацию". В результате, генетический алгоритм оптимизирует результат гораздо лучше.

Притом, что сгенерировать такую мутацию гораздо сложнее вычислительно, прирост эффективности и потолок результата выше засчёт того, что мутация с помощью LLM происходит в гораздо более разумном пространстве программ. В статье можно найти сравнение FunSearch и аналога AutoML-Zero, который не смог найти такие же крутые программы.

Добавлю, что есть и альтернатива генетике - это AlphaZero-подход, а именно AlphaTensor и AlphaDev, на счету которых тоже уже есть открытия. При этом важно, что область применения и AlphaZero, и FunSearch весьма специфична, так что, сингулярность ещё не близко.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/139

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA