Telegram Group & Telegram Channel
AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/34
Create:
Last Update:

AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/34

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Mr. Durov launched Telegram in late 2013 with his brother, Nikolai, just months before he was pushed out of VK, the Russian social-media platform he founded. Mr. Durov pitched his new app—funded with the proceeds from the VK sale—less as a business than as a way for people to send messages while avoiding government surveillance and censorship.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA