Telegram Group & Telegram Channel
📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv



tg-me.com/machinelearning_interview/1712
Create:
Last Update:

📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv

BY Machine learning Interview













Share with your friend now:
tg-me.com/machinelearning_interview/1712

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA