Telegram Group & Telegram Channel
Large Language Models as Optimizers [2023]

Формулировка промпта серьёзно влияет на качество работы LLM. Именно здесь был найден тот самый "Take a deep breath and work on this problem step-by-step", дающий хорошую производительность. Попробуем разобраться в этой работе.

Авторы формулируют технику Optimization by PROmpting (OPRO), использующую LLM в качестве оптимизатора. На вход модели подаётся следующее:
1) Мета-промпт - описание, что и зачем оптимизируем. Вся полезная информация о задаче.
2) Пары "решение - скор". В ходе оптимизации будут генерироваться новые кандидаты. Все кандидаты сортируем по скору и добавляем топ лучших пар в этот вход

Далее мы запускаем эту штуку много раз и получаем всё более и более крутых кандидатов. Применять это можно в теории к чему угодно, хоть вместо градиентного спуска использовать. Но преимущество данного метода в том, что для него естественно языковое пространство, поэтому его используют для оптимизации промпта. Получается схема на картинке.

Из хорошего - промпт, генерируемый для определённой LLM на одном датасете, хорошо переносится на другой. Из плохого - промпты, хорошо работающие для одной LLM, не обязательно работают хорошо для другой LLM. Интересна природа таких отличий, ведь их претрейн должен быть +- похож, а вот дообучение на Human Feedback уже нет. Есть ли там хоть какая-то связь или это чистая случайность?

Возникает и другой вопрос - какова роль именно LLM в качестве оптимизатора? Вряд ли она в себе содержит представление о том, как разные конкретные LLM буду работать при разных промптах. Насколько такой оптимизатор является "умным", насколько он далёк от случайного перебора промптов?

Так или иначе, вновь мы видим доминацию оптимизации над человеческим проектированием. Возможно, какая-то большая и сложная оптимизация поверх LLM даст интересные плоды, но проблема в том, что сама LLM - очень большой вычислительный кусок, и его внутренности и обучение никак не оптимизируются. Но мы когда-нибудь заменим и их, тогда точно заживём.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/164
Create:
Last Update:

Large Language Models as Optimizers [2023]

Формулировка промпта серьёзно влияет на качество работы LLM. Именно здесь был найден тот самый "Take a deep breath and work on this problem step-by-step", дающий хорошую производительность. Попробуем разобраться в этой работе.

Авторы формулируют технику Optimization by PROmpting (OPRO), использующую LLM в качестве оптимизатора. На вход модели подаётся следующее:
1) Мета-промпт - описание, что и зачем оптимизируем. Вся полезная информация о задаче.
2) Пары "решение - скор". В ходе оптимизации будут генерироваться новые кандидаты. Все кандидаты сортируем по скору и добавляем топ лучших пар в этот вход

Далее мы запускаем эту штуку много раз и получаем всё более и более крутых кандидатов. Применять это можно в теории к чему угодно, хоть вместо градиентного спуска использовать. Но преимущество данного метода в том, что для него естественно языковое пространство, поэтому его используют для оптимизации промпта. Получается схема на картинке.

Из хорошего - промпт, генерируемый для определённой LLM на одном датасете, хорошо переносится на другой. Из плохого - промпты, хорошо работающие для одной LLM, не обязательно работают хорошо для другой LLM. Интересна природа таких отличий, ведь их претрейн должен быть +- похож, а вот дообучение на Human Feedback уже нет. Есть ли там хоть какая-то связь или это чистая случайность?

Возникает и другой вопрос - какова роль именно LLM в качестве оптимизатора? Вряд ли она в себе содержит представление о том, как разные конкретные LLM буду работать при разных промптах. Насколько такой оптимизатор является "умным", насколько он далёк от случайного перебора промптов?

Так или иначе, вновь мы видим доминацию оптимизации над человеческим проектированием. Возможно, какая-то большая и сложная оптимизация поверх LLM даст интересные плоды, но проблема в том, что сама LLM - очень большой вычислительный кусок, и его внутренности и обучение никак не оптимизируются. Но мы когда-нибудь заменим и их, тогда точно заживём.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/164

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

Knowledge Accumulator from vn


Telegram Knowledge Accumulator
FROM USA