Telegram Group & Telegram Channel
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX [2024]

Одной из главных компонент обучения общего интеллекта будет обучающее распределение задач. На мой взгляд, оно не обязано быть сложным и высокоразмерным, главная необходимая характеристика - это высокое разнообразие задач. XLand-MiniGrid является движением именно в эту сторону.

Существует такая среда XLand, на которой тренировали AdA. Каждая задача представляла из себя случайную 3Д-комнату, на которой были разбросаны объекты. Агент управлялся от первого лица, получая изображение на вход. При создании задачи сэмплировался набор "правил" - то, как между собой взаимодействуют объекты, разбросанные по комнате. Например, если два определённых объекта касаются друг друга, то вместо них появляется определённый третий.

Несколько простых правил порождали ~10^40 возможных задач, на которых потом обучали мета-алгоритм. Авторы XLand-MiniGrid применили похожий подход, но вместо 3Д-комнаты используется небольшая 2Д-сетка, таким образом убирается лишняя сложность и уменьшается требуемый компьют. Сейчас самое время взглянуть на иллюстрацию.

Существует процедура генерации задачи - строится дерево "подзадач", каждая из которых - "получение" определённого объекта из полученных ранее (засчёт правил превращения). Финальная цель - получить объект в корне этого дерева. У дерева можно регулировать разнообразие и количество вершин, таким образом задавая сложность.

Среда реализована в JAX и позволяет эффективно гонять её на GPU, запуская много сред одновременно, что уменьшает вероятность нахождения боттлнека в симуляторе.

Минусом в этой среде, на мой взгляд, является не особо большое концептуальное разнообразие правил взаимодействия объектов в этой среде - по факту они все сводятся к нахождению рядом между собой 2 объектов, либо к держанию агентом объекта. Реальная ли эта проблема? Неясно, потому что ещё непонятно, насколько именно разнообразным должен быть класс задач, на котором мета-обучают интеллект.

Кажется, что эволюция обучающих сред должна происходить совместно с эволюцией мета-алгоритмов, и все они должны двигаться в сторону общего интеллекта. Под этим я имею ввиду, что необходим какой-то meta-RL-бенчмарк - задача, на котором не запускают мета-обучение, а только мета-тестируют итоговый обучающий алгоритм. Это бы позволило исследователям соревноваться на одном "лидерборде", экспериментируя с моделями и задачами.

Тем не менее, даже в рамках XLand-MiniGrid существует пространство для экспериментов с мета-лёрнингом, в рамках которого можно найти AGI-архитектуру, удовлетворяющую всем необходимым требованиям.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/215
Create:
Last Update:

XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX [2024]

Одной из главных компонент обучения общего интеллекта будет обучающее распределение задач. На мой взгляд, оно не обязано быть сложным и высокоразмерным, главная необходимая характеристика - это высокое разнообразие задач. XLand-MiniGrid является движением именно в эту сторону.

Существует такая среда XLand, на которой тренировали AdA. Каждая задача представляла из себя случайную 3Д-комнату, на которой были разбросаны объекты. Агент управлялся от первого лица, получая изображение на вход. При создании задачи сэмплировался набор "правил" - то, как между собой взаимодействуют объекты, разбросанные по комнате. Например, если два определённых объекта касаются друг друга, то вместо них появляется определённый третий.

Несколько простых правил порождали ~10^40 возможных задач, на которых потом обучали мета-алгоритм. Авторы XLand-MiniGrid применили похожий подход, но вместо 3Д-комнаты используется небольшая 2Д-сетка, таким образом убирается лишняя сложность и уменьшается требуемый компьют. Сейчас самое время взглянуть на иллюстрацию.

Существует процедура генерации задачи - строится дерево "подзадач", каждая из которых - "получение" определённого объекта из полученных ранее (засчёт правил превращения). Финальная цель - получить объект в корне этого дерева. У дерева можно регулировать разнообразие и количество вершин, таким образом задавая сложность.

Среда реализована в JAX и позволяет эффективно гонять её на GPU, запуская много сред одновременно, что уменьшает вероятность нахождения боттлнека в симуляторе.

Минусом в этой среде, на мой взгляд, является не особо большое концептуальное разнообразие правил взаимодействия объектов в этой среде - по факту они все сводятся к нахождению рядом между собой 2 объектов, либо к держанию агентом объекта. Реальная ли эта проблема? Неясно, потому что ещё непонятно, насколько именно разнообразным должен быть класс задач, на котором мета-обучают интеллект.

Кажется, что эволюция обучающих сред должна происходить совместно с эволюцией мета-алгоритмов, и все они должны двигаться в сторону общего интеллекта. Под этим я имею ввиду, что необходим какой-то meta-RL-бенчмарк - задача, на котором не запускают мета-обучение, а только мета-тестируют итоговый обучающий алгоритм. Это бы позволило исследователям соревноваться на одном "лидерборде", экспериментируя с моделями и задачами.

Тем не менее, даже в рамках XLand-MiniGrid существует пространство для экспериментов с мета-лёрнингом, в рамках которого можно найти AGI-архитектуру, удовлетворяющую всем необходимым требованиям.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/215

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Knowledge Accumulator from vn


Telegram Knowledge Accumulator
FROM USA