Telegram Group & Telegram Channel
AI-инфраструктура Авито: практические решения для LLM и VLM

На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.

Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.

Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.

Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.

Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.



tg-me.com/ai_machinelearning_big_data/7762
Create:
Last Update:

AI-инфраструктура Авито: практические решения для LLM и VLM

На Data Fest 2025 команда Авито показала, как устроена их внутренняя ML разработка. В основе большинства продуктовых ИИ-решений — собственная языковая модель A-Vibe (до 7 млрд параметров, обучена на 700 млрд токенов). Для нее специально сделали токенизатор под русский язык — он обрабатывает тексты на 29% эффективнее стандартных. Это позволило в два раза ускорить работу модели. A-Vibe уже работает в продакшене и заняла первое место среди моделей до 7 миллиардов параметров в бенчмарке МЕРА.

Для техподдержки сделали инструмент на базе LLM: он переписывает ответы агентов, чтобы они звучали более эмпатично и по-человечески, и саммаризует обращения при передаче между сотрудниками. Агенты довольны: 97% отметили, что стало удобнее.

Под все это в Авито построили свою ML-платформу. В ней есть хранилище признаков для моделей, система разметки с проверкой качества и решение Aqueduct — оно встраивается прямо в модель и экономит до 30% ресурсов на инференсе. Платформа уже позволяет запускать продакшен-модели без программирования, через no-code интерфейс.

Стажеры тоже работают с реальными задачами — например, обучают модели с нуля и оптимизируют пайплайны. Один такой проект помог в 10 раз сократить расходы на проверку звонков.

Отдельный блок на фестивале занял ML Cup от Авито. Участники решали задачи по рекомендациям и поиску дублей — те же, что крутятся в продакшене и обрабатывают 4 миллиарда событий в день. За два месяца подали 6500 решений, в конкурсе участвовало почти 900 человек.

BY Machinelearning





Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7762

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Machinelearning from vn


Telegram Machinelearning
FROM USA