Telegram Group & Telegram Channel
🖥 Важная особенность генераторов в Python!

Давай разберемся, как это работает:

Что такое Генератор?
Функция my_generator_function является генератором, потому что она использует ключевое слово yield.

В отличие от обычной функции, которая выполняет весь код и возвращает одно значение через return, генератор "приостанавливается" на каждом yield, возвращая указанное значение.

При следующем вызове он возобновляет работу с того места, где остановился.
Как работает yield:
Когда вы вызываете gen = my_generator_function(), код внутри функции не выполняется.

Создается специальный объект-генератор (gen).
Первый вызов next(gen) заставляет функцию выполниться до первого yield 1. Функция возвращает 1 и приостанавливается.
Второй вызов next(gen) возобновляет выполнение с точки после yield 1 и доходит до yield 2. Функция возвращает 2 и снова приостанавливается.
Именно поэтому print(next(gen), next(gen)) выводит 1 2.

Как работает return в генераторе:
Когда поток выполнения внутри генератора доходит до оператора return (в нашем случае return 73) или просто до конца функции без явного return, генератор считается завершенным.

Важно: Значение, указанное в return (здесь 73), не возвращается как обычное значение через yield. Вместо этого генератор выбрасывает (raises) специальное исключение: StopIteration.

Этот механизм StopIteration - стандартный способ в Python сигнализировать, что итератор (а генератор - это тип итератора) исчерпан.

Перехват StopIteration и получение значения:
В правой части кода мы пытаемся вызвать next(gen) еще раз.

Генератор возобновляется после yield 2, доходит до return 73 и выбрасывает StopIteration.

Конструкция try...except StopIteration as err: перехватывает это исключение.

Ключевой момент (показан стрелкой на картинке): Значение, которое было указано в операторе return генератора (73), становится доступным как атрибут .value пойманного исключения StopIteration.

Поэтому print(err.value) выводит # 73.

Итог:
Teturn в генераторе не производит очередное значение, а завершает его работу. При этом значение из return "упаковывается" в исключение StopIteration, сигнализирующее об окончании, и его можно извлечь из атрибута .value этого исключения, если перехватить его вручную.

Стандартный цикл for item in generator(): в Python автоматически обрабатывает StopIteration (просто завершает цикл) и не дает прямого доступа к err.value. Поэтому для демонстрации этого механизма и получения возвращаемого значения используется явный вызов next() внутри блока try...except.

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/pythonl/4749
Create:
Last Update:

🖥 Важная особенность генераторов в Python!

Давай разберемся, как это работает:

Что такое Генератор?
Функция my_generator_function является генератором, потому что она использует ключевое слово yield.

В отличие от обычной функции, которая выполняет весь код и возвращает одно значение через return, генератор "приостанавливается" на каждом yield, возвращая указанное значение.

При следующем вызове он возобновляет работу с того места, где остановился.
Как работает yield:
Когда вы вызываете gen = my_generator_function(), код внутри функции не выполняется.

Создается специальный объект-генератор (gen).
Первый вызов next(gen) заставляет функцию выполниться до первого yield 1. Функция возвращает 1 и приостанавливается.
Второй вызов next(gen) возобновляет выполнение с точки после yield 1 и доходит до yield 2. Функция возвращает 2 и снова приостанавливается.
Именно поэтому print(next(gen), next(gen)) выводит 1 2.

Как работает return в генераторе:
Когда поток выполнения внутри генератора доходит до оператора return (в нашем случае return 73) или просто до конца функции без явного return, генератор считается завершенным.

Важно: Значение, указанное в return (здесь 73), не возвращается как обычное значение через yield. Вместо этого генератор выбрасывает (raises) специальное исключение: StopIteration.

Этот механизм StopIteration - стандартный способ в Python сигнализировать, что итератор (а генератор - это тип итератора) исчерпан.

Перехват StopIteration и получение значения:
В правой части кода мы пытаемся вызвать next(gen) еще раз.

Генератор возобновляется после yield 2, доходит до return 73 и выбрасывает StopIteration.

Конструкция try...except StopIteration as err: перехватывает это исключение.

Ключевой момент (показан стрелкой на картинке): Значение, которое было указано в операторе return генератора (73), становится доступным как атрибут .value пойманного исключения StopIteration.

Поэтому print(err.value) выводит # 73.

Итог:
Teturn в генераторе не производит очередное значение, а завершает его работу. При этом значение из return "упаковывается" в исключение StopIteration, сигнализирующее об окончании, и его можно извлечь из атрибута .value этого исключения, если перехватить его вручную.

Стандартный цикл for item in generator(): в Python автоматически обрабатывает StopIteration (просто завершает цикл) и не дает прямого доступа к err.value. Поэтому для демонстрации этого механизма и получения возвращаемого значения используется явный вызов next() внутри блока try...except.

@pythonl

BY Python/ django




Share with your friend now:
tg-me.com/pythonl/4749

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Python django from vn


Telegram Python/ django
FROM USA