Telegram Group & Telegram Channel
REINFORCE - главное оружие против недифференцируемых задач

Все мы в жизни сталкиваемся с ситуациями, когда есть какая-то функция полезности J, зависящая от параметров Theta. Если можно посчитать производную, то мы в шоколаде - пользуемся градиентным спуском. Но что, если нет?

Рассмотрим такую абстракцию - параметры системы Theta влияют на распределение действий A, а результатом этих действий является J. Если распределение на A не полностью сконцентрировано в одной точке, то существует способ получить несмещённую оценку на градиент J по Theta!

Тут-то и появляется REINFORCE / Policy Gradient. На картинке вывод формулы, сразу же применённый к ситуации, когда действий несколько и они составляют траекторию - tau. Буквой pi обозначается распределение действий A - его и называют стратегией (policy).

Итак, метод в теории рабочий, но дальше он сталкивается с жестокой реальностью - дисперсия оценки градиента безумна, требуется слишком много данных. Во многом RL сводится к тому, чтобы найти способ уменьшить дисперсию оценки. Тот же самый PPO, обычно используемый для RLHF - всего лишь костыль, позволяющий переиспользовать данные, шагая весами Theta несколько раз.

Ситуация с REINFORCE напоминает одну щекотливую тему. Казалось бы - у нас есть окончательное решение недифференцируемого вопроса - просто собирай данные и шагай по этому градиенту. Строго доказано, что достаточно отмасштабировать алгоритм, дать ему больше ресурсов, и он обучит всё, что угодно.

Но реальность печальнее. Можно сколько угодно рассказывать, что масштабирование решит все фундаментальные проблемы, но в конце концов придётся улучшать и сам алгоритм. Готовым кинуть в меня Bitter Lesson-ом предлагаю почитать мой пост про него, там есть о том, как этот урок многие понимают неправильно. Через десятки лет все будут смеяться над тем, что люди хотели с помощью предсказания следующего токена и RL поверх человеческой разметки обучить интеллект, как сейчас над тем, что люди пытались вручную придумывать фичи для компьютерного зрения.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/162
Create:
Last Update:

REINFORCE - главное оружие против недифференцируемых задач

Все мы в жизни сталкиваемся с ситуациями, когда есть какая-то функция полезности J, зависящая от параметров Theta. Если можно посчитать производную, то мы в шоколаде - пользуемся градиентным спуском. Но что, если нет?

Рассмотрим такую абстракцию - параметры системы Theta влияют на распределение действий A, а результатом этих действий является J. Если распределение на A не полностью сконцентрировано в одной точке, то существует способ получить несмещённую оценку на градиент J по Theta!

Тут-то и появляется REINFORCE / Policy Gradient. На картинке вывод формулы, сразу же применённый к ситуации, когда действий несколько и они составляют траекторию - tau. Буквой pi обозначается распределение действий A - его и называют стратегией (policy).

Итак, метод в теории рабочий, но дальше он сталкивается с жестокой реальностью - дисперсия оценки градиента безумна, требуется слишком много данных. Во многом RL сводится к тому, чтобы найти способ уменьшить дисперсию оценки. Тот же самый PPO, обычно используемый для RLHF - всего лишь костыль, позволяющий переиспользовать данные, шагая весами Theta несколько раз.

Ситуация с REINFORCE напоминает одну щекотливую тему. Казалось бы - у нас есть окончательное решение недифференцируемого вопроса - просто собирай данные и шагай по этому градиенту. Строго доказано, что достаточно отмасштабировать алгоритм, дать ему больше ресурсов, и он обучит всё, что угодно.

Но реальность печальнее. Можно сколько угодно рассказывать, что масштабирование решит все фундаментальные проблемы, но в конце концов придётся улучшать и сам алгоритм. Готовым кинуть в меня Bitter Lesson-ом предлагаю почитать мой пост про него, там есть о том, как этот урок многие понимают неправильно. Через десятки лет все будут смеяться над тем, что люди хотели с помощью предсказания следующего токена и RL поверх человеческой разметки обучить интеллект, как сейчас над тем, что люди пытались вручную придумывать фичи для компьютерного зрения.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/162

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

Knowledge Accumulator from ye


Telegram Knowledge Accumulator
FROM USA