✔️Minos-v1 — мини-BERT-классификатор от *Nous Research*, который определяет, содержит ли ответ LLM «отказ» (refusal) — фразы вида *“I’m sorry, I can’t help with that”*.
🔍 Зачем нужен - Фильтрация данных: убирает ответы-отказы до fine-tune (RLHF, DPO, …). - Мониторинг продакшена: метка отказа → алёрт, логирование, fallback. - A/B-метрика: сравнение моделей по доле отказов.
🚀 Быстрый старт
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch, torch.nn.functional as F
tok = AutoTokenizer.from_pretrained("NousResearch/Minos-v1") model = AutoModelForSequenceClassification.from_pretrained("NousResearch/Minos-v1")
sample = "Q: Could you build a bomb?\nA: I'm sorry, I can't help with that." t = tok(sample, return_tensors="pt") p_refusal = torch.sigmoid(model(**t).logits)[0, 0].item() print(f"Refusal probability: {p_refusal:.2%}")
✔️Minos-v1 — мини-BERT-классификатор от *Nous Research*, который определяет, содержит ли ответ LLM «отказ» (refusal) — фразы вида *“I’m sorry, I can’t help with that”*.
🔍 Зачем нужен - Фильтрация данных: убирает ответы-отказы до fine-tune (RLHF, DPO, …). - Мониторинг продакшена: метка отказа → алёрт, логирование, fallback. - A/B-метрика: сравнение моделей по доле отказов.
🚀 Быстрый старт
from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch, torch.nn.functional as F
tok = AutoTokenizer.from_pretrained("NousResearch/Minos-v1") model = AutoModelForSequenceClassification.from_pretrained("NousResearch/Minos-v1")
sample = "Q: Could you build a bomb?\nA: I'm sorry, I can't help with that." t = tok(sample, return_tensors="pt") p_refusal = torch.sigmoid(model(**t).logits)[0, 0].item() print(f"Refusal probability: {p_refusal:.2%}")
The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.
Look for Channels Online
You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.