Telegram Group & Telegram Channel
🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7789
Create:
Last Update:

🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT

BY Machinelearning







Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7789

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Machinelearning from ye


Telegram Machinelearning
FROM USA