Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control

πŸ”Έ Presenter: Arshia Hemmat

πŸŒ€ Abstract:
This presentation introduces advancements in addressing compositional challenges in text-to-image (T2I) generation models. Current diffusion models often struggle to associate attributes accurately with the intended objects based on text prompts. To address this, a new Edge Prediction Vision Transformer (EPViT) is introduced for improved image-text alignment evaluation. Additionally, the proposed Focused Cross-Attention (FCA) mechanism uses syntactic constraints from input sentences to enhance visual attention maps. DisCLIP embeddings further disentangle multimodal embeddings, improving attribute-object alignment. These innovations integrate seamlessly into state-of-the-art diffusion models, enhancing T2I generation quality without additional model training.

πŸ“„ Paper: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control


Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️



tg-me.com/RIMLLab/144
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control

πŸ”Έ Presenter: Arshia Hemmat

πŸŒ€ Abstract:
This presentation introduces advancements in addressing compositional challenges in text-to-image (T2I) generation models. Current diffusion models often struggle to associate attributes accurately with the intended objects based on text prompts. To address this, a new Edge Prediction Vision Transformer (EPViT) is introduced for improved image-text alignment evaluation. Additionally, the proposed Focused Cross-Attention (FCA) mechanism uses syntactic constraints from input sentences to enhance visual attention maps. DisCLIP embeddings further disentangle multimodal embeddings, improving attribute-object alignment. These innovations integrate seamlessly into state-of-the-art diffusion models, enhancing T2I generation quality without additional model training.

πŸ“„ Paper: Object-Attribute Binding in Text-to-Image Generation: Evaluation and Control


Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/144

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

RIML Lab from ye


Telegram RIML Lab
FROM USA