Telegram Group Search
Отличная работа онкологов из Кембриджа, люблю такое. Они реализовали идею, которая давно напрашивается: вместо того, чтобы уничтожать раковые клетки, можно попытаться вернуть их в нормальное состояние. Ведь что такое нейробластома — это клетки-предшественники, которые “забыли”, что должны стать клетками нервной ткани. Они застряли в незрелом состоянии и делятся, не в силах пройти этот этап.

В Кембридже испытали «дифференциационную терапию» (differentiation therapy): подавили размножение опухолевых клеток и заставили их дифференцироваться, т.е. превращаться в нейрональные. Проще говоря, вернули их на изначальную траекторию развития. Кстати, тот же фокус с нормализацией опухолей удавался Майклу Левину, но он действовал через мембранные потенциалы, т.е. биоэлектричество.

Слишком обольщаться тоже не стоит, пока все результаты на животных и лишь на одном типе рака, но подкупает, что британские ученые скомбинировали два препарата, уже одобренные FDA для людей. Да и сам подход привлекателен, так как, во-первых, биологичен и, во-вторых, обращает “зло” в “добро”. Более тонкая задача, нежели просто убийство зла.
Сегодня исполняется ровно полгода знаменитому письму с призывом ввести мораторий на обучение мощных ИИ моделей. Авторы предлагали сделать паузу на шесть месяцев, опасаясь быстрого развития чат-ботов. Под письмом свыше 33 тысяч подписей. Интересно, сильно ли эти люди переживают сейчас, что моратория не случилось.

Конечно, письмо наделало шуму, и в ряде стран чиновники стали обсуждать регулирование ИИ сферы. Но похоже, что первый шок и ажиотаж вокруг чат-ботов угасает. Мы привыкаем жить с ними, воспринимая их просто как еще один инструмент, и все сложнее убедить себя, что от них веет катастрофой. В марте письмо казалось эмоциональной реакцией впечатлительных людей, таким оно представляется и сейчас, в сентябре.

На днях вышло другое открытое письмо экспертов, по иному поводу, но тоже крайне странное. По моим наблюдениям, сам жанр коллективных писем задает игру на упрощение, и часто потом самим подписантам бывает неловко.
Тема нового номера Nature: наука в эпоху искусственного интеллекта (Science and the new age of AI). Будет несколько выпусков, на повестке главный вопрос: как ИИ изменит науку.

Тут я вспоминаю эссе прошлого года, которое написали К.В. Анохин, К.С. Новоселов (да, тот самый нобелевский лауреат), С.К. Смирнов (тот самый лауреат Филдсовской премии), А.Р. Ефимов и Ф.М. Матвеев. Эссе называется «Искусственный интеллект для науки и наука для искусственного интеллекта».

Новоселов там замечает, что физики не любят задач, которые не описываются небольшим количеством красивых уравнений: “если возникает необходимость написать уравнение в полстраницы, физик скорее всего решит, что в его рассуждении что-то пошло не так". Есть большой класс задач, которыми пренебрегают физики-люди. Однако ИИ не смутят «некрасивые» громоздкие уравнения, он будет их решать, орудовать ими, и тогда физика может пойти по пути, по которому человек никогда не хаживал.

Это вопрос о том, возможна ли “инопланетная” наука, т.е. работающая модель мира, созданная другим разумом. Если ИИ продолжит умнеть, то “инопланетности” в науке будет все больше, и, соответственно, понимания у людей все меньше.

Сценарии могут быть разными, но есть намек на то, что потенциальный успех ИИ в науке (if any) может иметь глубокие основания. Сразу две команды ученых, независимо друг от друга, пришли к необычной идее: Вселенная похожа на программу машинного обучения и, вероятно, непрерывно обучается. Ушел читать Nature.
Гарвард официально запустил проект по коннектому мозга мыши. За пять лет планируют отсканировать 10 кубических миллиметров, на это NIH выделяет $30 млн, половина уйдет Гарварду, остальное получат Princeton, MIT, Cambridge, Johns Hopkins. Авторы проекта считают, что этот объем ткани сгенерит 10 000 терабайт, обещают затем выложить в общий доступ. Впрочем, они оговариваются, что полный мозг мыши потребует в 50 раз больше данных. Параллельно запущены еще несколько проектов по коннектомике, все в рамках BRAIN CONNECTS, как части BRAIN Initiative.

На фоне 10 кубических мм проще оценить перспективы создания коннектома мозга человека. Мое отношение к науке такого рода я уже высказал два года назад, мне лишь остается порадоваться за людей, которые сидят на этой теме. Коннектомы и атласы — неисчерпаемый источник грантов. На десятилетия.
Где могут быть полезны “атласы” и “карты” — там, где смотрят на изменения во времени. Например, в Стэнфорде недавно изучили нейроны мозжечка человека в разных возрастах. И обнаружилось, что у этих нейронов 3D-архитектура генома постепенно перестраивается в течение всей жизни. Что и отражено на картинке. Как мы видим, хроматин радикально меняет свою конформацию на пути от младенчества до старости.

Один из авторов статьи признается: “Со временем эти клетки стали чем-то совершенно не похожим на классический нейрон. Они становятся практически не-нейронными в смысле 3D структуры генома. Мы действительно не могли поверить своим глазам. Они были похожи на глию”.

К слову, в мозжечке проживает большая часть нейронов мозга.
Сделал перевод короткого эссе Пола Нерса, нобелевского лауреата и первого директора Института Фрэнсиса Крика в Лондоне. Эссе называется “Биология должна генерировать не только данные, но и идеи” (“Biology must generate ideas as well as data”) — звучит еще актуальнее на фоне нового залпа из 20+ статей по переписи типов нейронов от консорциума NIH BICCN.

“Довольно часто, придя на научный доклад, я чувствую себя утонувшим в данных. При этом не уделяется должного внимания формулировкам, а также тому, зачем собираются данные, какие гипотезы проверяются, какие идеи возникают”.

Я уже упоминал текст Нерса в 2021 году, в связи с первым залпом от BICCN, но с тех пор Nature закрыл эссе пейволом, так что PDF положу в комментарии, а вот перевод.

О важности идей в науке, помимо данных, пишут и в статье “Креативность как противоядие от излишней предсказуемости исследований” (“Creativity as an antidote to research becoming too predictable”). Авторы считают, что нам нужно не столько больше данных, сколько обоснованные предположения (т. е. теория) о том, что искать в первую очередь. Статья призывает поощрять творческий поиск и риск:

“Если мы хотим, чтобы исследования процветали, нам необходимо будет взять на себя ответственность и переосмыслить процесс производства знаний в наших лабораториях, чтобы допускать случайные обходные пути, неудачи и тупики”.

И если Нерс больше обращается к ученым, то статья в EMBO Journal, скорее, адресована тем, кто организует научный процесс. На этом пока завершаю тему “атласов и карт” мозга.
Вам дают $1 миллиард с условием потратить его на разработки в области биомедицины. Какие проекты вы запустите? Ровно этот вопрос встал перед Рене Вегжин в прошлом октябре, когда она возглавила агентство перспективных исследований ARPA-Health. Теперь, наконец, ответы начинают появляться. И они пока обнадеживают.

Я все ждал, какой портфель проектов соберет ARPA-H, интерпретируя его как ставку на будущее медицины. Не так важен каждый отдельный проект, сколько логика их отбора. Эта логика покажет, как именно они хотят изменить принципы лечения. И вот, первое впечатление — акцент на естественные механизмы восстановления, делегирование функций клеткам и тканям. Тот самый уход от микроуправления.

Например, не конструировать механические суставы, а регенерировать их, выращивая из клеток пациента и заменяя ими больные ткани (NITRO). Печатать из клеток новое сердце вместо имплантации искусственного (HEART) и омолаживать тимус путем перепрограммирования стволовых клеток (CDTR). Или, скажем, создавать бактерии, которые привлекут иммунные клетки к очагу опухоли (SPIKE), или же обучать иммунную систему с помощью мРНК (CUREIT). Еще идея, “живая аптека”: клетки программируют синтезировать нужные препараты прямо в организме (REACT).

Пока налицо преобладание генной, клеточной и тканевой инженерии. Или, если короче, инженерной биологии, о disruptive перспективах которой в этом канале сказано не раз. Биология становится новой средой программирования, и в этом одна из главных ставок на будущее.
И такое бывает. 52-летняя женщина с растущей с детства тератомой на голове. После хирургического иссечения кисты в ней обнаружили сальноподобное вещество, твердые сферулы и многочисленные пряди волос. Такой признак типа "мешочек с шариками", хотя и встречается редко, но однозначно указывает на зрелую кистозную тератому головы или шеи.

Взято из “Sack of Marbles” Appearance of a Scalp Teratoma | Radiology (2023)
“Neuralink заявляет, что планирует провести 11 операций по вживлению чипа в мозг пациентов в 2024 году, 27 в 2025 году и 79 в 2026 году. Затем, согласно документам, предоставленным инвесторам, число операций резко возрастет: с 499 операций в 2027 году до 22 204 к 2030 году”.

В Bloomberg вышел комплиментарный лонгрид про Neuralink, этакий тизер клинических испытаний. Автор съездил на место, ему показали овец и обезьян, и он выдал глянцевый репортаж. Говорит про комнату, где обезьяны проводят время за компьютером, выбирая и управляя за счет активности мозга (есть и фото). Содержательных деталей не так много, зато призван впечатлить Илон Маск, который у автора с ходу генерит технические решения, до которых не смогли дойти его нейро-инженеры. Из текста мы узнаём, что Маск ставит им жесткие сроки, чтобы «успеть до того, как ИИ возьмет верх. Мы хотим добиться этого с маниакальным чувством безотлагательности. Маниакальным».

Конечно, одобрение FDA окрыляет, и компания заказывает такие репортажи. Но реальная картина этой области не сводится к состязанию Neuralink vs. Synchron, и работы идут в разных местах. Скажем, только из совсем недавнего:

💥 В Rice University успешно испытали на людях новый беспроводной стимулятор мозга. Устройство размером с горошину кладут на твердую мозговую оболочку — контакта с мозгом не требуется, он остается цел, а мощности хватает, чтобы активировать кору подобно ТМС. Технология позволяет отправлять и принимать данные даже при смещении передатчика на несколько см.

💥 Вышли сразу две статьи по "temporal interference", новому методу глубокой стимуляции, когда электрические поля высокой частоты пересекаются в выбранной точке в глубине мозга, и разница частот стимулирует клетки в этой области. Воздействовали на стриатум и на гиппокамп, получая когнитивные эффекты у пациентов. Словом, успешно испытан метод неинвазивной (!) DBS на людях.
Пока мы все следим за перипетиями вокруг Open AI, сотрудники Google DeepMind опубликовали весьма примечательную статью “Социальный путь к человекоподобному искусственному интеллекту”. Авторы фактически призывают изменить стратегию дальнейшего развития ИИ — уйти от обучения изолированных систем.

Первое, что они говорят: есть предел тому, чего можно достичь обучением на статичных датасетах, даже если данных очень много. Поэтому второе: сами агенты должны генерировать данные для обучения, и делать это они будут, вступая в разные социальные отношения друг с другом. И хотя статья формально про ИИ, львиная доля ее посвящена механизмам биологической эволюции: популяционному давлению, “гонке вооружений”, макиавеллистскому отбору, разделению труда, социальному обучению и кумулятивной культуре. Словом, те процессы, что привели к сложным многоклеточным организмам и, в конечном итоге, появлению людей, следует использовать для генерации новизны. Или чуть более заумно, так можно снижать вероятность сходимости к стационарному или периодическому потоку генерируемых данных.

Путь этот довольно опасный, так как напоминает “усиление функции” в вирусологии, и функция здесь — конкуренция за ресурсы и умение обманывать. Но сам взгляд на разум как продукт взаимодействия с другими разумами вполне справедлив, и авторы считают, что пришло время многоагентных систем. Правда, умалчивают о том, какой мощи вычислений это потребует.
Новая атака на Neuralink, на этот раз от членов Палаты представителей. Вот тут подробно: “Законодатели США просят SEC начать в отношении Илона Маска расследование о мошенничестве”.

Суть обвинений — жестокое обращение с обезьянами, о чем Маск якобы знал, но прилюдно солгал, чем и ввел инвесторов и общество в заблуждение. Животные испытывали разнообразные страдания, а по меньшей мере 12 здоровых особей были умерщвлены из-за проблем с имплантами.

Письмо в SEC (Комиссию по ценным бумагам и биржам) возникло на контрасте с долгожданным одобрением FDA и недавним репортажем Bloomberg, где автор лично побывал в Neuralink и заверил читателей, что обезьяны и овцы живут в прекрасных условиях. Это даже может быть правдой, но спрос сейчас с Маска по фактам прошлых лет. Ждем реакции SEC.
Please open Telegram to view this post
VIEW IN TELEGRAM
Хотел написать про чемпионов микросна, пингвинов, которые спят по 10+ тысяч раз в сутки, выделяя не больше четырех секунд на каждый сон, но Илья уже рассказал лучше и полнее, чем это удалось бы мне. Правда, я ждал этой новости, чтобы отметить еще одно любопытное исследование, о котором можно прочесть в том же Science: Джессика Кендалл-Бар, сотрудница Института океанографии UC San Diego, пишет о том, как она изучала сон северных морских слонов (тюленей).

Оказалось, на суше они спят по 10 часов в день, но во время многомесячных походов в океане им хватает всего двух. Причем в сон они погружаются и ментально, и физически: чтобы достичь состояния глубокого сна, уходят вниз на 200 метров и ниже. Только так удается вздремнуть, не рискуя нарваться на акул и китов. Затем мозг переходит в фазу R.E.M., слонов настигает сонный паралич, и дальше их уносит вниз по спирали.

Как считает Джессика, морские слоны “демонстрируют беспрецедентную гибкость сна, что ставит под сомнение предположения о базовых требованиях ко сну и хронической депривации сна у млекопитающих”. Вопрос о том, сколько сна нужно мозгу, не имеет однозначного ответа. И да, как и в случае с пингвинами, эти данные были собраны ЭЭГ датчиками.
Как происходит нырок в сон, заканчивающийся REM “sleep spirals”
Сразу и Science, и Nature сообщают про “антроботов”: из клеток трахеи взрослого человека биологи создали органоиды, которые могут передвигаться с помощью ресничек. Они не только плавают и ползают, но и вызывают быстрое заживление царапин в слое культивируемых человеческих нейронов. Я писал об этом в феврале, но тогда был препринт, и вот вышла статья.

Эта работа под началом Майкла Левина — логичное продолжение истории с ксеноботами. Ксено- означает лягушку; антро-, понятно, человека. У беспокойных комочков, смахивающих на странные существа, обычный человеческий геном, без примесей и редактуры. В человеке эти клетки устилают поверхность трахеи, но если их “освободить” и дать развиваться вне организма, они собираются в комки и начинают бродить и кружить по разным траекториям.

Антро/ксено-боты — это инструмент, с помощью которого ученые пытаются исследовать скрытое разнообразие форм и поведений, возможных биологически, но которые, словно свернутые измерения, никогда не реализуются. То, что мы наблюдаем в природе, от бактерий до слонов, может быть лишь пузырьком в неизведанном пространстве потенциального.

Зная, как оно устроено, можно будет искать принципы управления формой (а по сути, поведением масс клеток), чтобы решить проблемы регенерации, рака и старения. Амбиция здесь именно такая, не меньше. К слову, та самая статья Левина про медицину будущего вновь в открытом доступе. И 'возня с антроботами' имеет прямое к ней отношение.
Органоиды мозга могут обучаться, это показали в Indiana University, подключив органоид к многоэлектродной матрице и обучив его распознавать голоса разных людей. В этой схеме электроды служили внешними слоями нейросети: через них подавали “входной” сигнал и считывали активность клеток в качестве “выхода”. Сам же органоид, как считают авторы статьи в Nature Electronics, выполнял резервуарные вычисления.

В феврале 2023 группа нейроученых из Johns Hopkins выдвинула инициативу “Органоидный интеллект”. Они предлагали подключать органоиды к электронике и создавать биологическую альтернативу искусственным нейросетям, выигрывая у тех по энергоэффективности и скорости обучения. Теперь сделан первый шаг в русле этой идеи (или второй, если считать игру в пинг-понг культуры нейронов год назад).
Хронический стресс усиливает метастазы, пишут в Cancer Cell, а я вновь думаю про тесную связь нервных клеток с опухолями, о чем сейчас все больше сведений. Не раз уже писал здесь о cancer neuroscience, а недавно в Nature вышел текст о том же.

В свое время меня впечатлил эксперимент, прямо показывающий, что активность нейронов влияет на развитие глиом. Это было сотрудничество Мишель Монже из Стэнфорда и Дэвида Гутманна из WashU. Дэвид вывел ГМ-мышей, у которых на 9 неделе развития возникали опухоли в зрительном нерве, а Мишель владела методом оптогенетики. Она стимулировала этот нерв, и опухоли становились больше и агрессивнее.

Сразу возникла идея сделать наоборот — не усиливать активность зрительного нерва, а приглушить ее. Для этого в лабе Гутманна выращивали мышей почти в темноте, при тусклом свете. И вот Монже вспоминает, что шла по коридору, когда ей позвонил Гутманн. Он сказал: “опухолей нет”.

— Что? Что значит "нет опухолей"? Ты уверен, что это те самые мыши?

— Да. Я никогда раньше такого не видел. Опухолей нет.

Они повторили опыт в Стэнфорде, а затем еще раз в лаборатории Гутманна. В темноте опухоли не развивались. А на свету — как по расписанию.

Их статья вышла в Nature в 2021-м. С той поры было еще много разных экспериментов, но этот самый наглядный.

Для серьезного погружения в тему рекомендую обзор в Cell “Cancer neuroscience: State of the field, emerging directions”. А если попроще — позавчера вышел подкаст с Монже, где она рассказывает сперва про Long Covid, а далее о нейробиологии рака. По ссылке и аудио, и транскрипт.
Как может выглядеть медицина будущего? Пятьдесят специалистов из ведущих лабораторий США выдали базу: “Большие вызовы на стыке инженерии и медицины”. По сути, это дорожная карта, где обозначены ключевые технологии на пару десятилетий вперед. Не про всю медицину в целом, но про самую, пожалуй, перспективную ее часть — ту, что касается био- и нейро-инженерии.

Главное, что я бы отметил — переход от манипуляции биохимией (фарма) к управлению коллективами клеток (инженерия). Здесь разница в уровнях, на котором происходит воздействие, и это согласуется с тем, что я писал ранее. Другой важный переход: “от лечения симптомов заболеваний с помощью малых молекул широкого действия к лечению непосредственных причин заболеваний”.

Ожидается много всего: персонализация, мультимодальные данные, моделирование in silico и in vitro, умные материалы, выращивание тканей, управление иммунной функцией, редактирование генома. Но главное, что добавится, это возможность “заменять детали”, от клеток до органов.

Это будет не так просто — нужно уметь контролировать поведение тканей в организме, вдолгую. Авторы не затрагивают такие свойства как эволюция или агентность, пусть и зачаточная, что может сильно усложнить задачу. Но в целом картина хорошо расписана, для интересующихся must read.
«Мини-печень» вырастет в лимфатическом узле человека, сообщает нам Nature. Биотехнологи из LyGenesis ввели донорские клетки печени в лимфатический узел пациента с печеночной недостаточностью. Идея состоит в том, что в течение нескольких месяцев донорские клетки вырастут в «миниатюрную печень», фильтрующую кровь.

Пациент, получивший лечение 25 марта, выписан из клиники и успешно восстанавливается после процедуры. Как утверждает СЕО LyGenesis, лимфатические узлы идеально подходят для выращивания мини-печени, поскольку получают много крови, и их сотни по всему телу. Компания уже тестирует аналогичный подход к выращиванию клеток почек и поджелудочной железы в лимфатических узлах животных.
Новую попытку ‘обратного инжиниринга мозга’ финансируют AFOSR и IARPA*, что любопытно. Вышел препринт, где изложены концепция и подход, авторы из UC Davis, UC Berkeley, MIT, Stanford, Georgia Tech, UT Austin, University of Florida. Настрой серьезный.

Их кредо: с появлением новых поколений фотонных и электронных мемристивных материалов задача выглядит куда более реалистичной. Следует отказаться от КМОП, от архитектуры фон Неймана и перейти на электронно-фотонные 3D схемы и биоправдоподобные алгоритмы, чтобы воспроизвести пластичность, адаптивность и способность обучаться на шумных данных. Повторяя за мозгом, они хотят получить энергоэффективные и не жадные до данных вычисления — то, что мозгу дается легко.

В препринте подробно о том, что и как они будут делать. Ключевое — фраза о разработке “интеллектуальных агентов, которые могут работать в тандеме с людьми над сложными задачами в шумной и непредсказуемой среде”. Вот откуда здесь AFOSR и IARPA. Это часть стратегии, где также и DARPA c программой N3, а восходит она к отцам-основателям Агентства, таким как Дж. Ликлайдер с его “Симбиозом человека и компьютера”.

Очевидно, интерес к нейроморфным вычислениям будет расти, поскольку нейросети прожорливы, а материалы становятся все более биомиметическими.

* Военно-воздушное управление научных исследований США и Агентство передовых исследований в сфере разведки США.
2024/04/19 12:23:28
Back to Top
HTML Embed Code: