Forwarded from Machinelearning
OpenAI открыла доступ к GPT-Image-1 через API — ранее она работала только в ChatGPT.
Стоимость генерации тарифицируется по токенам: текст ($5/млн), ввод изображений ($10/млн), вывод ($40/млн). Одно изображение обходится в $0,02–0,19. Например, картинка 1024×1024 в высоком качестве «съест» 4160 токенов. Модель превосходит Midjourney-v7 в точности следования запросам, но имеет ограничения: плохо распознаёт мелкий текст, нелатинские шрифты, медицинские данные.
Изображения можно загружать через URL или Base64 (PNG, JPEG до 20 МБ). Максимальное разрешение — 768×2000 пикселей. API анализирует объекты, цвета, текст, но не подходит для задач с высокой точностью. Для безопасности добавлены фильтры контента и метаданные C2PA. Тестировать модель можно в Playground OpenAI — подробности в гайдах по работе с API.
openai.com
Suna — открытый ИИ-агент, способный выполнять реальные задачи через чат-интерфейс. В отличие от закрытых коммерческих моделей, Suna работает офлайн, бесплатен и доступен для самостоятельного хостинга.
Suna не просто отвечает на вопросы: он автоматизирует рутину — от парсинга сайтов и генерации отчетов до развертывания веб-приложений. В основе лежит изолированная Docker-среда, React/Next.js для интерфейса и интеграция с LiteLLM, Supabase и Redis. Помимо исходного кода, есть подписка на развернутый у Kortix AI сервис: бесплатно 10 минут в месяц, за 29$ - 4 часа, а за 199\мес - 40 часов работы Suna.
suna.so
Пользователи Firefox теперь могут заглянуть в содержимое ссылки, не открывая ее. Экспериментальная функция в Firefox Labs 138 показывает карточку с заголовком, описанием, временем чтения и тремя ключевыми пунктами, сгенерированными локальной языковой моделью. Все работает через HTTPS-запросы без загрузки страницы или выполнения скриптов — данные парсятся из метатегов Open Graph и Reader View.
Приватность в приоритете: модель SmolLM2-360M (369 МБ) запускается на устройстве через WebAssembly (wllama), избегая передачи данных в облако. Функция пока в тесте: разработчики ждут фидбека об опыте использования от пользователей.
blog.mozilla.org
xAI расширила возможности голосового ассистента Grok: Grok Vision, поддержка многоязыкового аудио и поиск в реальном времени в голосовом режиме. Все это уже доступно пользователям iOS, а для Android-устройств две последние опции открыты только с подпиской SuperGrok. Grok Vision, как заявляют разработчики, позволяет ассистенту анализировать экран смартфона и комментировать происходящее «здесь и сейчас» — например, распознавать объекты или текст.
Ebby Amir (xAI) в X (ex-Twitter)
BMW объявил о партнерстве с DeepSeek для интеграции ИИ-технологий в машины, продаваемые в Китае. Сотрудничество, представленное на Шанхайском автосалоне, направлено на улучшение «Умного персонального ассистента» — система получит новые функции и расширенный доступ к данным.
Интеграция ИИ DeepSeek ускорит переход BMW к «программно-определяемым» автомобилям. Ожидается, что обновления затронут не только ассистента, но и улучшат интерфейсы, а также поддержат более сложные сценарии автономного управления.
bmwblog.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Python: www.tg-me.com/pythonl
Linux: www.tg-me.com/linuxacademiya
Собеседования DS: www.tg-me.com/machinelearning_interview
Нерйросети www.tg-me.com/ai_machinelearning_big_data
C++ www.tg-me.com/cpluspluc
Docker: www.tg-me.com/DevopsDocker
Хакинг: www.tg-me.com/linuxkalii
Devops: www.tg-me.com/DevOPSitsec
Data Science: www.tg-me.com/data_analysis_ml
Javascript: www.tg-me.com/javascriptv
C#: www.tg-me.com/csharp_ci
Java: www.tg-me.com/javatg
Базы данных: www.tg-me.com/sqlhub
Python собеседования: www.tg-me.com/python_job_interview
Мобильная разработка: www.tg-me.com/mobdevelop
Golang: www.tg-me.com/Golang_google
React: www.tg-me.com/react_tg
Rust: www.tg-me.com/rust_code
ИИ: www.tg-me.com/vistehno
PHP: www.tg-me.com/phpshka
Android: www.tg-me.com/android_its
Frontend: www.tg-me.com/front
Big Data: www.tg-me.com/bigdatai
МАТЕМАТИКА: www.tg-me.com/Математика Дата саентиста/com.data_math
Kubernets: www.tg-me.com/kubernetc
Разработка игр: https://www.tg-me.com/gamedev
Haskell: www.tg-me.com/haskell_tg
Физика: www.tg-me.com/fizmat
💼 Папка с вакансиями: www.tg-me.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tg-me.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tg-me.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tg-me.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tg-me.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tg-me.com/memes_prog
🇬🇧Английский: www.tg-me.com/english_forprogrammers
🧠ИИ: www.tg-me.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tg-me.com/addlist/BkskQciUW_FhNjEy
Python: www.tg-me.com/pythonl
Linux: www.tg-me.com/linuxacademiya
Собеседования DS: www.tg-me.com/machinelearning_interview
Нерйросети www.tg-me.com/ai_machinelearning_big_data
C++ www.tg-me.com/cpluspluc
Docker: www.tg-me.com/DevopsDocker
Хакинг: www.tg-me.com/linuxkalii
Devops: www.tg-me.com/DevOPSitsec
Data Science: www.tg-me.com/data_analysis_ml
Javascript: www.tg-me.com/javascriptv
C#: www.tg-me.com/csharp_ci
Java: www.tg-me.com/javatg
Базы данных: www.tg-me.com/sqlhub
Python собеседования: www.tg-me.com/python_job_interview
Мобильная разработка: www.tg-me.com/mobdevelop
Golang: www.tg-me.com/Golang_google
React: www.tg-me.com/react_tg
Rust: www.tg-me.com/rust_code
ИИ: www.tg-me.com/vistehno
PHP: www.tg-me.com/phpshka
Android: www.tg-me.com/android_its
Frontend: www.tg-me.com/front
Big Data: www.tg-me.com/bigdatai
МАТЕМАТИКА: www.tg-me.com/Математика Дата саентиста/com.data_math
Kubernets: www.tg-me.com/kubernetc
Разработка игр: https://www.tg-me.com/gamedev
Haskell: www.tg-me.com/haskell_tg
Физика: www.tg-me.com/fizmat
💼 Папка с вакансиями: www.tg-me.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.tg-me.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.tg-me.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.tg-me.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.tg-me.com/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: www.tg-me.com/memes_prog
🇬🇧Английский: www.tg-me.com/english_forprogrammers
🧠ИИ: www.tg-me.com/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.tg-me.com/addlist/BkskQciUW_FhNjEy
📌 Условие:
Вы работаете над системой, где каждый эксперимент (тест, запуск модели, продукт) может быть успешным или неуспешным.
Результат одного запуска — 1 (успех) или 0 (провал).
Известно:
- Вероятность успеха одного эксперимента — неизвестна, обозначим её как
p
.- У вас есть
N
исторических наблюдений: x1, x2, ..., xN
, где каждое xi
равно 0 или 1.Вопросы:
1. Построить оценку вероятности успеха
p
и доверительный интервал на уровне 95%.2. Рассчитать, сколько экспериментов нужно запустить, чтобы вероятность выхода в прибыль была выше 95%, учитывая:
- стоимость одного запуска
C
;- прибыль от одного успешного эксперимента
R
.---
▪️ Подсказки:
- Для оценки
p
используйте биномиальную модель.- Для доверительного интервала:
- Можно использовать нормальное приближение (если выборка большая),
- Или Wilson-интервал для аккуратности.
---
▪️ Что оценивается:
- Правильная работа с вероятностями и доверием.
- Способность адекватно аппроксимировать биномиальные распределения.
- Чистота и практичность вычислений.
---
▪️ Разбор возможного решения:
▪️ 1. Оценка вероятности успеха:
# p_hat - оценка вероятности успеха
p_hat = sum(xi_list) / N
где
xi_list
— список из 0 и 1 (результаты экспериментов).▪️ 2. Доверительный интервал через нормальное приближение:
import math
z = 1.96 # для 95% доверия
std_error = math.sqrt(p_hat * (1 - p_hat) / N)
lower_bound = p_hat - z * std_error
upper_bound = p_hat + z * std_error
▪️ 3. Wilson-интервал (более аккуратный):
z = 1.96 # для 95% доверия
center = (p_hat + z**2 / (2 * N)) / (1 + z**2 / N)
margin = (z * math.sqrt((p_hat * (1 - p_hat) / N) + (z**2 / (4 * N**2)))) / (1 + z**2 / N)
lower_bound = center - margin
upper_bound = center + margin
---
▪️ 4. Прибыльность эксперимента:
Формула прибыли при
n
экспериментах:
profit = successes * R - n * C
Требуется:
P(profit > 0) >= 0.95
Число успехов должно быть больше определённой границы:
min_successes = (n * C) / R
Если
n
велико, количество успехов приближается к нормальному распределению:
mean_successes = n * p_hat
std_successes = math.sqrt(n * p_hat * (1 - p_hat))
Для нормального приближения можно написать:
# Вероятность успешности через нормальное распределение
from scipy.stats import norm
# Вероятность, что количество успехов больше нужного
prob = 1 - norm.cdf(min_successes, loc=mean_successes, scale=std_successes)
Тогда перебором или через уравнение ищем минимальное
n
, чтобы prob >= 0.95
.---
▪️ Возможные подводные камни:
- Нельзя использовать нормальное приближение при малом
N
— нужна биномиальная модель.- Неверное задание границ доверительного интервала может привести к неправильной стратегии запуска.
- Плохое понимание соотношения
C
и R
приводит к ошибочным выводам об окупаемости.---
📌Дополнительные вопросы:
- Как бы вы учли, что прибыль от успеха — случайная величина?
- Как пересчитать стратегии, если вероятность успеха зависит от времени (`p = f(t)`)?
- Как применить байесовский апдейт для оценки вероятности успеха?
---
Please open Telegram to view this post
VIEW IN TELEGRAM
Московские_математические_олимпиады_1993—2005.pdf
2 MB
Московские математические олимпиады 1993—2005
Под редакцией В. М. Тихомирова
В книге собраны задачи Московских математических олимпиад 1993—
2005 г. с ответами, указаниями и подробными решениями. В дополнениях
приведены основные факты, используемые в решении олимпиадных задач,
и избранные задачи Московских математических олимпиад 1937—1992 г.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических
задач.
Под редакцией В. М. Тихомирова
В книге собраны задачи Московских математических олимпиад 1993—
2005 г. с ответами, указаниями и подробными решениями. В дополнениях
приведены основные факты, используемые в решении олимпиадных задач,
и избранные задачи Московских математических олимпиад 1937—1992 г.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических
задач.
🎲 Задача с подвохом: Монетки и ошибка интуиции
Условие:
У вас есть две монеты:
• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)
Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.
❓ Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?
🔍 Разбор:
На первый взгляд многие отвечают: «Мы выбрали монету случайно, значит вероятность всё ещё 50%». Но это ловушка!
Нам нужно пересчитать вероятность с учётом того, что выпал орёл. Это задача по формуле Байеса.
🧮 Обозначения:
• A: выбрана честная монета
• B: выбрана нечестная монета
• O: выпал орёл
Мы ищем вероятность:
P(B | O) — вероятность того, что выбрана Монета B, если мы увидели орла.
1️⃣ Запишем известные вероятности:
• P(A) = 0.5
• P(B) = 0.5
• P(O | A) = 0.5 (честная монета)
• P(O | 😎 = 1 (нечестная монета)
2️⃣ Применяем формулу Байеса:
P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))
Подставляем значения:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / (0.25 + 0.5)
= 0.5 / 0.75 ≈ 0.6667
✅**Ответ:**
Вероятность того, что выбрана нечестная монета после выпадения орла, составляет примерно 66,7%.
💥 **Подвох:**
Интуитивно кажется, что выбор монеты не зависит от результата подбрасывания, но дополнительная информация (факт выпадения орла) меняет распределение вероятностей. Это классический пример условной вероятности.
🧠 **Почему это важно для Data Science:**
• Обновление вероятностей при поступлении новых данных — ключевой навык для Байесовских моделей
• Ошибки интуиции часто встречаются при работе с вероятностями в задачах диагностики, фрод-аналитики и рекомендаций
• Глубокое понимание условной вероятности помогает строить более точные и надёжные модели
Условие:
У вас есть две монеты:
• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)
Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.
❓ Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?
🔍 Разбор:
На первый взгляд многие отвечают: «Мы выбрали монету случайно, значит вероятность всё ещё 50%». Но это ловушка!
Нам нужно пересчитать вероятность с учётом того, что выпал орёл. Это задача по формуле Байеса.
🧮 Обозначения:
• A: выбрана честная монета
• B: выбрана нечестная монета
• O: выпал орёл
Мы ищем вероятность:
P(B | O) — вероятность того, что выбрана Монета B, если мы увидели орла.
1️⃣ Запишем известные вероятности:
• P(A) = 0.5
• P(B) = 0.5
• P(O | A) = 0.5 (честная монета)
• P(O | 😎 = 1 (нечестная монета)
2️⃣ Применяем формулу Байеса:
P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))
Подставляем значения:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / (0.25 + 0.5)
= 0.5 / 0.75 ≈ 0.6667
✅
Вероятность того, что выбрана нечестная монета после выпадения орла, составляет примерно 66,7%.
💥 **Подвох:**
Интуитивно кажется, что выбор монеты не зависит от результата подбрасывания, но дополнительная информация (факт выпадения орла) меняет распределение вероятностей. Это классический пример условной вероятности.
🧠 **Почему это важно для Data Science:**
• Обновление вероятностей при поступлении новых данных — ключевой навык для Байесовских моделей
• Ошибки интуиции часто встречаются при работе с вероятностями в задачах диагностики, фрод-аналитики и рекомендаций
• Глубокое понимание условной вероятности помогает строить более точные и надёжные модели
🕳️ Учёные предложили, что у света может быть «тёмная» сторона — и это может перевернуть физику, которую мы знаем уже 100 лет.
🧪 Что произошло
Всем известен школьный опыт: если пропустить свет через две щели, на экране появляется рисунок из светлых и тёмных полос. Это считалось главным доказательством того, что свет ведёт себя как волна.
Но команда немецких учёных из Института Макса Планка говорит:
👉 может быть, это вовсе не волны, а особое квантовое поведение частиц света — фотонов.
👻 Что такое «тёмный фотон»?
По их теории, фотоны бывают двух типов:
Яркие фотоны — те, которые мы видим и которые фиксирует прибор
Тёмные фотоны — невидимые, не взаимодействуют с миром напрямую, но могут менять поведение ярких фотонов
🧠 Представь, что кто-то невидимый толкает шарик на столе — ты не видишь «того, кто толкнул», но видишь, как шарик катится. Вот так же и тёмные фотоны: они не видны, но влияют на результат.
🔍 Почему это важно
Если теория верна, то:
Мы можем переосмыслить природу света: возможно, он не волна, а чисто частица
Это убирает загадку: «как один фотон проходит через две щели сразу?»
Это может повлиять на квантовые технологии и объяснить эффекты, которые раньше казались странными
📌 Пока это теория, но она уже вызвала обсуждения в мире науки.
Если она подтвердится — нам придётся по-новому смотреть на то, как устроен свет и квантовая физика.
🔗 Подробнее — в статье New Scientist
🧪 Что произошло
Всем известен школьный опыт: если пропустить свет через две щели, на экране появляется рисунок из светлых и тёмных полос. Это считалось главным доказательством того, что свет ведёт себя как волна.
Но команда немецких учёных из Института Макса Планка говорит:
👉 может быть, это вовсе не волны, а особое квантовое поведение частиц света — фотонов.
👻 Что такое «тёмный фотон»?
По их теории, фотоны бывают двух типов:
Яркие фотоны — те, которые мы видим и которые фиксирует прибор
Тёмные фотоны — невидимые, не взаимодействуют с миром напрямую, но могут менять поведение ярких фотонов
🧠 Представь, что кто-то невидимый толкает шарик на столе — ты не видишь «того, кто толкнул», но видишь, как шарик катится. Вот так же и тёмные фотоны: они не видны, но влияют на результат.
🔍 Почему это важно
Если теория верна, то:
Мы можем переосмыслить природу света: возможно, он не волна, а чисто частица
Это убирает загадку: «как один фотон проходит через две щели сразу?»
Это может повлиять на квантовые технологии и объяснить эффекты, которые раньше казались странными
📌 Пока это теория, но она уже вызвала обсуждения в мире науки.
Если она подтвердится — нам придётся по-новому смотреть на то, как устроен свет и квантовая физика.
🔗 Подробнее — в статье New Scientist
🧠 Задача для дата-сайентистов: "Невидимая переменная"
У вас есть датафрейм с результатами тестирования модели A/B:
По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.
🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».
---
🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?
💡 Подсказка: данные собирались в течение 30 дней, но колонка с датой/временем была потеряна при сохранении. Однако user_id — это не случайное число.
🎯 Что нужно сделать:
1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B
🎯 Ключевая идея решения:
Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.
Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце
📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?
🔍 **Решение: как восстановить эффект**
1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket
Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.
У вас есть датафрейм с результатами тестирования модели A/B:
| user_id | group | conversion_rate |
|---------|--------|-----------------|
| 1001 | A | 0 |
| 1002 | A | 1 |
| 1003 | B | 0 |
| 1004 | B | 1 |
| ... | ... | ... |
По результатам A/B теста кажется, что разницы между группами нет. Вы проверили chi-squared test и Mann-Whitney — тоже ничего.
🧩 Однако ваш коллега утверждает, что в данных явно зарыта сильная зависимость, которую можно выявить, если «включить голову».
---
🔍 Вопрос:
Какой скрытый фактор мог полностью «маскировать» эффект от теста и как его можно вычислить, даже если он отсутствует в таблице напрямую?
💡 Подсказка:
1. 🧠 Предположить, что user_id содержит зашумлённую информацию о времени регистрации (например, ID выдаются монотонно)
2. 🧮 Смоделировать зависимость результата от user_id и проверить, не является ли тест несбалансированным по времени
3. 📈 Построить метрику на основе сгруппированных окон по user_id и визуализировать смещение между группами A и B
🎯 Ключевая идея решения:
Хотя колонка с датой была потеряна, можно сделать разумное предположение:
🔸 `user_id` назначается **монотонно**, т.е. пользователи с меньшими ID пришли раньше.
Если эксперимент длился 30 дней, а пользователи приходили неравномерно, то:
- группа A могла доминировать в начале
- группа B — в конце
📉 А что, если в эти периоды поведение пользователей менялось? Например, была акция, баг, праздник?
🔍 **Решение: как восстановить эффект**
1. 🟤 Добавим к данным колонку `bucket = user_id // 100`, чтобы разбить пользователей на условные "временные окна"
2. 🟤 Для каждого `bucket` считаем среднюю `conversion_rate` отдельно по группам A и B
3. 🟤 Строим график `conversion_A - conversion_B` по bucket
Если кривая скачет — тест **несбалансирован по времени** и глобальное сравнение групп вводит в заблуждение.
Почему нужно популяризировать математику?
Этот вопрос стал ключевым в разговоре ректора университета «Иннополис» Александра Гасникова и руководителя департамента анализа данных и моделирования ВТБ Дениса Суржко в подкасте «Деньги любят техно».
В этом сезоне подкаст стал философским и визионерским: гости говорят не только о технологических решениях, но и о смыслах, которые стоят за ними. Александр Гасников — молодой современный ученый, который перешел на позицию руководителя университета и занялся административной деятельностью. И о том, как отличаются две эти роли, он вполне подробно рассказал в выпуске.
А еще в подкасте: какие задачи стоят перед современными техническими вузами, почему подготовка молодых кадров должна стать приоритетом, какие навыки требуются в науке и в работе на коммерческие компании и в целом куда ведёт нас развитие ИИ.
Абсолютно точно полезно послушать всем.
Видеоверсия доступна здесь
Аудиоверсия — на любой удобной платформе
Этот вопрос стал ключевым в разговоре ректора университета «Иннополис» Александра Гасникова и руководителя департамента анализа данных и моделирования ВТБ Дениса Суржко в подкасте «Деньги любят техно».
В этом сезоне подкаст стал философским и визионерским: гости говорят не только о технологических решениях, но и о смыслах, которые стоят за ними. Александр Гасников — молодой современный ученый, который перешел на позицию руководителя университета и занялся административной деятельностью. И о том, как отличаются две эти роли, он вполне подробно рассказал в выпуске.
А еще в подкасте: какие задачи стоят перед современными техническими вузами, почему подготовка молодых кадров должна стать приоритетом, какие навыки требуются в науке и в работе на коммерческие компании и в целом куда ведёт нас развитие ИИ.
Абсолютно точно полезно послушать всем.
Видеоверсия доступна здесь
Аудиоверсия — на любой удобной платформе
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Y Combinator сделал ставку на ИИ-агентов, способных переосмыслить целые индустрии. Вместо точечных решений, основателям советуют создавать «полноценные ИИ-компании» - например, запускать собственные юридические бюро с ИИ-юристами вместо сотрудников. Такой подход позволяет обойти медлительных конкурентов, предлагая клиентам более дешевые и эффективные сервисы.
Особый интерес к автоматизации рутины: персональные ассистенты, которые не просто напоминают о задачах, а самостоятельно отвечают на письма, планируют встречи и имитируют стиль общения пользователя. Y Combinator верит: будущее за командами, которые не просто внедряют ИИ, а перестраивают рынки с нуля, как это сделали Airbnb или Stripe.
ycombinator.com
Ученые из Центра геномной регуляции в Барселоне впервые применили генеративный ИИ для проектирования синтетических молекул ДНК, способных управлять активностью генов в здоровых клетках млекопитающих. Модель, обученная на данных тысяч экспериментов, генерирует последовательности «с нуля», задавая критерии.
В качестве теста создали фрагменты ДНК, активирующие ген флуоресцентного белка в клетках крови мышей. Результаты совпали с прогнозами: синтетические усилители генной активности работали как «переключатели» в зависимости от типа клеток. Исследование открывает путь к персонализированным методам коррекции генов. По словам авторов, это похоже на «написание софта для биологии», где каждая инструкция для клетки становится программируемой.
technologynetworks.com
OpenAI представила HealthBench - бенчмарк для тестирования ИИ-систем в сфере здравоохранения. Разработанный при участии 262 врачей из 60 стран, он включает 5000 реалистичных диалогов, имитирующих общение пациентов и медиков. Каждый сценарий оценивается по индивидуальным критериям, созданным экспертами: точность данных или ясность ответов.
Всего в бенчмарке 48 562 параметра оценки, что позволяет глубоко анализировать работу моделей. Особый упор сделан на надежность: даже один ошибочный ответ в медицине критичен. HealthBench включает подборки сложных кейсов (HealthBench Hard), где современные ИИ еще отстают. Все данные и методики уже доступны в GitHub-репозитории OpenAI .
openai.com
Google анонсировала AI Futures Fund — программу для поддержки ИИ-стартапов. Участники получат ранний доступ к моделям DeepMind (Gemini, Imagen и Veo). Кроме технологий, стартапы смогут консультироваться с инженерами и исследователями Google, а также получат облачные кредиты для обучения и масштабирования решений. Уже сейчас с фондом работают проекты из разных сфер: индийский Toonsutra внедряет Gemini для перевода комиксов, Viggle экспериментирует с генерацией мемов, а платформа Rooms тестирует интерактивные 3D-пространства.
Программа открыта для стартапов из регионов, где доступен Gemini. Подать заявку можно на сайте фонда. Участники смогут претендовать не только на технические ресурсы, но и на прямые инвестиции от Google.
blog.google
Злоумышленники активно используют популяризацию ИИ для распространения вредоносного стиллера Noodlophile, маскируя атаки под сервисы для генерации видео и изображений. Как сообщает Morphisec, фейковые страницы Luma Dreammachine Al и CapCut AI рекламируются через соцсети, собирая до 62 000 просмотров на пост. Пользователям предлагают скачать «ИИ-софт», но вместо этого загружается ZIP-архив с исполняемым exe-файлом.
Запуск файла активирует легитимный CapCut.exe, который загружает .NET-лоадер CapCutLoader. Тот, в свою очередь, запускает Python-скрипт, устанавливающий Noodlophile Stealer. Вредонос крадет пароли, данные кошельков и другую информацию, а в некоторых случаях дополняется трояном XWorm для удаленного доступа. Эксперты напоминают: атаки через ИИ-технологии стали трендом. Осторожность — лучшая защита.
thehackernews.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 Математика, красота и истина в эпоху ИИ
Когда-то математическое доказательство считалось вершиной человеческой логики и элегантности. Но ИИ меняет даже это.
В статье исследуется, как ИИ трансформирует подходы к математике:
🔹 ИИ создает доказательства — не просто перебором, а находя закономерности, генерируя гипотезы и даже формируя контрпримеры.
🔹 Модели уровня DeepMind уже выигрывают медали на Международной математической олимпиаде.
🔹 Красота и элегантность в доказательствах теперь оцениваются не только людьми — ИИ начинает создавать новые формы "математической эстетики".
> “Они разрушают те границы, которые я считал непреодолимыми”
> — Эндрю Грэнвилл, математик
⚖️ Дискуссия: если ИИ способен доказать теорему, но человек не может это понять — считается ли это «знанием»?
📌 Полный текст
#искусственныйинтеллект #математика #ChatGPT #DeepMind #LLM #AI #наука
Когда-то математическое доказательство считалось вершиной человеческой логики и элегантности. Но ИИ меняет даже это.
В статье исследуется, как ИИ трансформирует подходы к математике:
🔹 ИИ создает доказательства — не просто перебором, а находя закономерности, генерируя гипотезы и даже формируя контрпримеры.
🔹 Модели уровня DeepMind уже выигрывают медали на Международной математической олимпиаде.
🔹 Красота и элегантность в доказательствах теперь оцениваются не только людьми — ИИ начинает создавать новые формы "математической эстетики".
> “Они разрушают те границы, которые я считал непреодолимыми”
> — Эндрю Грэнвилл, математик
⚖️ Дискуссия: если ИИ способен доказать теорему, но человек не может это понять — считается ли это «знанием»?
📌 Полный текст
#искусственныйинтеллект #математика #ChatGPT #DeepMind #LLM #AI #наука
📊 Математическая задача для Data Scientists: "Идеальная точка разбиения"
**Условие**
У тебя есть список чисел
Нужно определить: существует ли индекс, на котором можно разделить массив на две части так, чтобы стандартное отклонение слева и справа отличалось не более чем на ε (например, 0.1).
Формат:
Пример:
🔍 Подсказка
Используй
Но не забывай, что длина подмассива должна быть как минимум 2.
---
✅ Пример реализации:
```python
import statistics
def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
n = len(data)
if n < 4:
return False # Нужны хотя бы 2 элемента в каждой части
for i in range(2, n - 1):
left = data[:i]
right = data[i:]
if len(left) < 2 or len(right) < 2:
continue
std_left = statistics.stdev(left)
std_right = statistics.stdev(right)
if abs(std_left - std_right) <= epsilon:
return True
return False
```
📌 Пример использования:
```python
data = [10, 12, 11, 20, 21, 19]
print(has_balanced_std_split(data, epsilon=0.5)) # True или False в зависимости от разбивки
```
🎯 Что проверяет задача:
• понимание **дисперсии и стандартного отклонения**
• знание **статистических библиотек Python**
• работа с ограничениями на длину срезов
• мышление в духе «разделяй и анализируй»
**Условие**
У тебя есть список чисел
List[float]
, представляющий одномерное распределение (например, значения метрики или зарплаты). Нужно определить: существует ли индекс, на котором можно разделить массив на две части так, чтобы стандартное отклонение слева и справа отличалось не более чем на ε (например, 0.1).
Формат:
def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
...
Пример:
data = [1.0, 2.0, 3.0, 4.0, 5.0]
# Разделение после 2 → [1.0, 2.0], [3.0, 4.0, 5.0]
# std слева ≈ 0.5, справа ≈ 0.816 → разница = 0.316 > 0.1 → не подходит
🔍 Подсказка
Используй
statistics.stdev()
или numpy.std(ddof=1)
(с выборочной коррекцией). Но не забывай, что длина подмассива должна быть как минимум 2.
---
✅ Пример реализации:
```python
import statistics
def has_balanced_std_split(data: list[float], epsilon: float = 0.1) -> bool:
n = len(data)
if n < 4:
return False # Нужны хотя бы 2 элемента в каждой части
for i in range(2, n - 1):
left = data[:i]
right = data[i:]
if len(left) < 2 or len(right) < 2:
continue
std_left = statistics.stdev(left)
std_right = statistics.stdev(right)
if abs(std_left - std_right) <= epsilon:
return True
return False
```
📌 Пример использования:
```python
data = [10, 12, 11, 20, 21, 19]
print(has_balanced_std_split(data, epsilon=0.5)) # True или False в зависимости от разбивки
```
🎯 Что проверяет задача:
• понимание **дисперсии и стандартного отклонения**
• знание **статистических библиотек Python**
• работа с ограничениями на длину срезов
• мышление в духе «разделяй и анализируй»
🔥Ozon Tech платит 150 000 рублей за рекомендацию senior+ DS/ML-специалиста
🧠Идеальный момент помочь талантливым знакомым и заработать самому.
Кто может участвовать? Все, кто еще не работает в Ozon. Если рекомендованного вами кандидата берут на работу, то вы получаете бонус. Вознаграждение выплачивается после успешного прохождения испытательного срока.
Можно рекомендовать сколько угодно кандидатов (главное — по одному в каждой заявке). Отправлять рекомендации может любой человек не из Ozon, независимо от профессии.
🔗 Подробнее о вакансиях и условиях: https://s.ozon.ru/nkcdpub
🧠Идеальный момент помочь талантливым знакомым и заработать самому.
Кто может участвовать? Все, кто еще не работает в Ozon. Если рекомендованного вами кандидата берут на работу, то вы получаете бонус. Вознаграждение выплачивается после успешного прохождения испытательного срока.
Можно рекомендовать сколько угодно кандидатов (главное — по одному в каждой заявке). Отправлять рекомендации может любой человек не из Ozon, независимо от профессии.
🔗 Подробнее о вакансиях и условиях: https://s.ozon.ru/nkcdpub
🧠 Восстановление искажённых измерений с дневным смещением
У вас есть температурные измерения за 10 дней, но каждый день датчик добавляет случайное смещение (bias), постоянное в течение дня. Также есть шум измерений.
📊 Ваша задача:
1. Оценить bias по дням
2. Восстановить истинную температуру
3. Посчитать RMSE между восстановленной и настоящей температурой
📦 Генерация данных
🔍 Разбор: как оценить смещение
Идея: температура в течение дня плавно колеблется, но bias в этот день одинаков для всех точек. Если мы "сгладим" значения (например, скользящим средним), то можем аппроксимировать общий тренд — и вычесть его, получив оценку bias.
🔧 Способ: вычтем сглаженный тренд, затем усредним остатки по дню:
```python
# Сглаживаем тренд
df["trend"] = df["measured_temp"].rolling(window=12, center=True, min_periods=1).mean()
# Остатки (приближение к bias)
df["residual"] = df["measured_temp"] - df["trend"]
# Оценка bias как среднее отклонение внутри дня
bias_est = df.groupby("day")["residual"].mean()
df["estimated_bias"] = df["day"].map(bias_est)
# Восстановим температуру: measured - bias
df["restored_temp"] = df["measured_temp"] - df["estimated_bias"]
```
📊 Результаты
Оценим ошибку восстановления:
```python
from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_temp"], squared=False)
print(f"RMSE восстановления: {rmse:.4f}")
```
> ✅ Обычно RMSE ≈ 0.5–0.7 — это близко к стандартному отклонению шума, значит bias устранён успешно!
💡 Вывод
✔️ Простая техника — сглаживание + усреднение отклонений — позволяет оценить дневные смещения
✔️ Без знания "истинной" температуры можно получить довольно точную реконструкцию
✔️ Это напоминает реальные задачи очистки данных от сенсорных сдвигов или ошибок калибровки
📈 Отличный пример практики Data Science с уклоном в математику, временные ряды и обработку шумов!
У вас есть температурные измерения за 10 дней, но каждый день датчик добавляет случайное смещение (bias), постоянное в течение дня. Также есть шум измерений.
📊 Ваша задача:
1. Оценить bias по дням
2. Восстановить истинную температуру
3. Посчитать RMSE между восстановленной и настоящей температурой
📦 Генерация данных
import pandas as pd
import numpy as np
np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))
df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)
🔍 Разбор: как оценить смещение
Идея: температура в течение дня плавно колеблется, но bias в этот день одинаков для всех точек. Если мы "сгладим" значения (например, скользящим средним), то можем аппроксимировать общий тренд — и вычесть его, получив оценку bias.
🔧 Способ: вычтем сглаженный тренд, затем усредним остатки по дню:
```python
# Сглаживаем тренд
df["trend"] = df["measured_temp"].rolling(window=12, center=True, min_periods=1).mean()
# Остатки (приближение к bias)
df["residual"] = df["measured_temp"] - df["trend"]
# Оценка bias как среднее отклонение внутри дня
bias_est = df.groupby("day")["residual"].mean()
df["estimated_bias"] = df["day"].map(bias_est)
# Восстановим температуру: measured - bias
df["restored_temp"] = df["measured_temp"] - df["estimated_bias"]
```
📊 Результаты
Оценим ошибку восстановления:
```python
from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_temp"], squared=False)
print(f"RMSE восстановления: {rmse:.4f}")
```
> ✅ Обычно RMSE ≈ 0.5–0.7 — это близко к стандартному отклонению шума, значит bias устранён успешно!
💡 Вывод
✔️ Простая техника — сглаживание + усреднение отклонений — позволяет оценить дневные смещения
✔️ Без знания "истинной" температуры можно получить довольно точную реконструкцию
✔️ Это напоминает реальные задачи очистки данных от сенсорных сдвигов или ошибок калибровки
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Data Secrets
Кто обучает будущих архитекторов AGI
Каждый второй стартап пишет «AI-native» в питч-деке, но остаётся вопрос: кто вообще готовит тех, кто сможет строить такие системы?
Это преподаватели и эксперты-практики, которые не только работают в индустрии, но и делятся знаниями со студентами. Они читают курсы, вытаскивают студентов в реальные проекты и актуализируют программы в университетах.
Yandex ML Prize 2025 как раз про таких — про тех, кто стоит у истоков индустрии, хотя их обычно не видно в релизах и исследованиях. В этом году премия от Яндекса вручает гранты и поддерживает преподавателей, которые формируют будущую экосистему ML в России.
Прием заявок на премию открыт до 22 июня. Категории: от преподавателей со стажем до руководителей целых ML-программ.
Каждый второй стартап пишет «AI-native» в питч-деке, но остаётся вопрос: кто вообще готовит тех, кто сможет строить такие системы?
Это преподаватели и эксперты-практики, которые не только работают в индустрии, но и делятся знаниями со студентами. Они читают курсы, вытаскивают студентов в реальные проекты и актуализируют программы в университетах.
Yandex ML Prize 2025 как раз про таких — про тех, кто стоит у истоков индустрии, хотя их обычно не видно в релизах и исследованиях. В этом году премия от Яндекса вручает гранты и поддерживает преподавателей, которые формируют будущую экосистему ML в России.
Прием заявок на премию открыт до 22 июня. Категории: от преподавателей со стажем до руководителей целых ML-программ.
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
По словам Павла Дурова, его платформа и компания Илона Маска xAI заключили годовое соглашение. xAI заплатит Telegram $300 млн. за интеграцию чат-бота Grok прямо в мессенджер. Помимо этого, Telegram также будет получать 50% от выручки с подписок на Grok, которые будут продаваться внутри платформы.
Илон Маск позже написал в X: "Контракт еще не подписан". Однако он не стал уточнять детали, оставив вопрос открытым. Пока что официальная позиция Telegram – сделка есть, и она принесет пользователям лучший ИИ на рынке уже этим летом.
Новость пришла на фоне важных для Telegram событий: сервис преодолел отметку в 1 млрд. активных пользователей в месяц в этом году и разместил облигации на $1.5 млрд.
Pavel Durov
Anthropic сняла ограничения с функции веб-поиска в Claude: теперь даже бесплатные пользователи смогут получать ответы на основе актуальных данных из интернета. Ранее, доступ к этой опции, которая анализирует информацию в реальном времени, был эксклюзивом для платных подписчиков. Это изменение позволит чаще обновлять знания модели и точнее решать задачи.
Параллельно стартовало тестирование голосового режима в мобильном приложении. Пользователи могут общаться с Claude в формате диалога, выбирая из 5 вариантов голоса и получать краткие текстовые сводки прошлых бесед. По умолчанию для диалогов задействована модель Sonnet 4.
support.anthropic
OpenAI активно прорабатывает функцию "Вход через ChatGPT", позволяющую пользователям авторизовываться в сторонних приложениях через свои аккаунты ChatGPT. Компания уже собирает заявки от разработчиков, желающих интегрировать эту опцию в свои сервисы. Пилотный запуск для тестирования уже доступен в Codex CLI — инструменте для работы с ИИ в терминале. Разработчики могут подключить ChatGPT Free, Plus или Pro к своим API-аккаунтам, получая бонусные кредиты ($5 для Plus и $50 для Pro).
Это стратегический ход для расширения экосистемы. С 600 млн активных пользователей ежемесячно, "Вход через ChatGPT" может стать ключевым элементом, помогая OpenAI конкурировать с Google и Apple в сфере единого входа и онлайн-сервисов. Точные сроки публичного релиза пока неизвестны.
techcrunch
К своему юбилею Google Photos получает мощное обновление, сфокусированное на ИИ-редактировании. Сервис, где ежемесячно редактируют 210 млн. снимков, теперь предлагает умные подсказки по улучшению кадра одним нажатием. Можно тыкнуть пальцем или обвести область — нейросеть предложит подходящий инструмент. Главные новинки — "Reimagine" и "Auto Frame", ранее доступные только на Pixel 9.
"Reimagine" меняет выбранный объект или добавляет новый по текстовому запросу через генеративный ИИ. "Auto Frame" автоматически кадрирует фото, а нейросеть дорисовывает фон. Плюс Google добавит QR-коды для альбомов, чтобы удобно собирать фото с мероприятий. Правда, обновленный редактор появится на Android в июне, а владельцам iPhone ждать до конца года.
arstechnica
С 28 мая стартовал прием заявок на ежегодную премию Yandex ML Prize 2025. Эта награда — реальное признание и поддержка для тех, кто растит новые кадры ML в России. Премия существует с 2019 года как память об Илье Сегаловиче, и за шесть лет её получили уже 60 выдающихся педагогов и руководителей.
Податься могут вузовские преподаватели, ученые из исследовательских центров и руководители образовательных программ в области Сomputer Science. Победителей ждут денежные призы и полезные гранты на Yandex Cloud, которые точно пригодится в работе: делать новые курсы, организовывать хакатоны и проводить исследования вместе со студентами.
Заявки принимают до 22 июня. Само награждение, как обычно, пройдет осенью.
habr.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Таблицы интегралов и другое.pdf
55.9 MB
Таблицы интегралов и другие математические формулы
Г. Б. Двайт
Содержит подробные таблицы неопределенных и определенных интегралов, много других математических формул.
Г. Б. Двайт
Содержит подробные таблицы неопределенных и определенных интегралов, много других математических формул.