Telegram Group & Telegram Channel
digital-twin

В данном исследовании группа ученых из ВШЭ моделируют производительность систем хранения данных, используя вероятностный подход. Они рассматривают различные компоненты — кэш, SSD, HDD, — собирают показатели IOPS и задержки при разных конфигурациях и нагрузках, а затем обучают свои модели CatBoost и Normalizing Flow. Авторы демонстрируют, что этот подход не только предсказывает средние значения, но и охватывает всё распределение метрик, что особенно важно для оценки неопределенности и сценариев «цифрового двойника». Исследователи также проверяют надежность предсказаний с помощью известных зависимостей и отмечают, что полученные результаты тесно соответствуют реальным измерениям, превосходя простые методы вроде kNN. Данная методика может быть применена для анализа производительности, оптимизации настроек и предиктивного обслуживания систем хранения данных. Вклад авторов не ограничивается выбранным подходом: они также предоставляют открытый доступ к набору данных, использованному в исследовании. Найти его можно в репозитории с кодом. Работа может быть полезна ML-инженерам и DS-специалистам.

статья | код



tg-me.com/hse_cs_opensource/88
Create:
Last Update:

digital-twin

В данном исследовании группа ученых из ВШЭ моделируют производительность систем хранения данных, используя вероятностный подход. Они рассматривают различные компоненты — кэш, SSD, HDD, — собирают показатели IOPS и задержки при разных конфигурациях и нагрузках, а затем обучают свои модели CatBoost и Normalizing Flow. Авторы демонстрируют, что этот подход не только предсказывает средние значения, но и охватывает всё распределение метрик, что особенно важно для оценки неопределенности и сценариев «цифрового двойника». Исследователи также проверяют надежность предсказаний с помощью известных зависимостей и отмечают, что полученные результаты тесно соответствуют реальным измерениям, превосходя простые методы вроде kNN. Данная методика может быть применена для анализа производительности, оптимизации настроек и предиктивного обслуживания систем хранения данных. Вклад авторов не ограничивается выбранным подходом: они также предоставляют открытый доступ к набору данных, использованному в исследовании. Найти его можно в репозитории с кодом. Работа может быть полезна ML-инженерам и DS-специалистам.

статья | код

BY Открытый код ФКН ВШЭ




Share with your friend now:
tg-me.com/hse_cs_opensource/88

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

telegram from ar


Telegram Открытый код ФКН ВШЭ
FROM USA