Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Correcting Diffusion Generation through Resampling


πŸ”Έ Presenter: Ali Aghayari

πŸŒ€ Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


πŸ“„ Papers: Correcting Diffusion Generation through Resampling


Session Details:
- πŸ“… Date: Tuesday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/157
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Correcting Diffusion Generation through Resampling


πŸ”Έ Presenter: Ali Aghayari

πŸŒ€ Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


πŸ“„ Papers: Correcting Diffusion Generation through Resampling


Session Details:
- πŸ“… Date: Tuesday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/157

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless β€œ$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

telegram from br


Telegram RIML Lab
FROM USA