Telegram Group & Telegram Channel
Кейс - поиск ошибок в строительных заказах на покупку

Давно не было разборов кейсов. Давайте расскажу про один из текущих. Он тоже реализуется по концепции LLM Core.

Команда кейса участвует в соревновании за право реализовать проект для строительной компании. Компания высылает своим подрядчикам заказы на покупку, получает от них ответные предложения, а потом перепроверяет, что фактические параметры заказа не нарушены. Для этого нужно извлекать данные из многостраничных PDF-ок в форматах разных поставщиков.

Этот проект - обычный data extraction на базе VLM, но есть три нюанса:

(1) Реализовать надо в Google, а у Gemini на Vertex AI пока очень упоротый structured output format (не JSON schema, а Vertex AI API)
(2) Клиент очень медленный. Пачки PDF-ок он прислал, а вот ground truth дата - нет. Ибо организационные пробуксовки помноженные на рождественнские праздники.
(3) Конкуренты хотят использовать Google Document AI и обучать какие-то дополнительные модели. Если сделать надежное решение просто на 1-2 промптах, то команда может хорошо выделиться.

Про детали реализации не буду углубляться, это обычный structured data extraction, как в победителе Enterprise RAG Challenge или кейсе про захват рынка. Из особенностей реализации в этом проекте:

(1) да, нужно возиться с SO форматом на Gemini Pro под Vertex AI, но это решаемая проблема.
(2) отсутствие ground truth data - тоже решаемая проблема. Можно взять другую модель от другого поставщика (например, Claude 3.5 Sonnet v2) и сравнивать ответы разных моделей. Если они сошлись, то обе модели извлекают правильно. Если расходятся, то одна из черепашек – ошибается. Строим heatmap, чтобы понять масштаб проблем и пойти улучшать.
(3) то, что в данном проекте извлечение данных из PDF - это implementation detail. И Gemini и Sonnet по API принимают на вход PDF.
(4) обе модели начинают путаться, когда за раз хочется извлечь заказ на покупку на 20-30 позиций со всеми данными. Разбивка процесса извлечения на два промпта повышает качество. Но есть теория, что нормальный CoT поможет стабильно извлекать одним единственным промптом.

И еще тут возникает интересный момент с тестированием. Команда проекта бралась за него зная, что может быть проблема с получением ground truth data для тестов. А без тестов обычно браться за LLM проекты - я считаю слишком рискованным.

Но в этом проекте сразу было понятно, какие блоки можно тестировать и как (а это не всегда так). Плюс было видно, что можно временно заменить ground truth данные сравнением результатов двух моделей. А это уже позволяет запустить стабильный и контроллируемый цикл разработки. Потом можно будет либо вручную разметить часть PDF либо получить исходные данные из БД.

Во вторых, в проекте есть аж две очевидных точки для тестирования внутренних блоков - тест на извлечение PDF-ок и тест на результаты работы всего pipeline (что в такой-то PDF-ке есть такие-то ошибки).

Добавление нескольких точек тестирования сильно снижает риски реализации данного проекта. Поэтому его можно было брать.

А как вы тестируете свои проекты с LLM под капотом? И что делаете, если удобных данных для тестирования нет?

Ваш, @llm_under_hood 🤗
🔥36👍229



tg-me.com/llm_under_hood/481
Create:
Last Update:

Кейс - поиск ошибок в строительных заказах на покупку

Давно не было разборов кейсов. Давайте расскажу про один из текущих. Он тоже реализуется по концепции LLM Core.

Команда кейса участвует в соревновании за право реализовать проект для строительной компании. Компания высылает своим подрядчикам заказы на покупку, получает от них ответные предложения, а потом перепроверяет, что фактические параметры заказа не нарушены. Для этого нужно извлекать данные из многостраничных PDF-ок в форматах разных поставщиков.

Этот проект - обычный data extraction на базе VLM, но есть три нюанса:

(1) Реализовать надо в Google, а у Gemini на Vertex AI пока очень упоротый structured output format (не JSON schema, а Vertex AI API)
(2) Клиент очень медленный. Пачки PDF-ок он прислал, а вот ground truth дата - нет. Ибо организационные пробуксовки помноженные на рождественнские праздники.
(3) Конкуренты хотят использовать Google Document AI и обучать какие-то дополнительные модели. Если сделать надежное решение просто на 1-2 промптах, то команда может хорошо выделиться.

Про детали реализации не буду углубляться, это обычный structured data extraction, как в победителе Enterprise RAG Challenge или кейсе про захват рынка. Из особенностей реализации в этом проекте:

(1) да, нужно возиться с SO форматом на Gemini Pro под Vertex AI, но это решаемая проблема.
(2) отсутствие ground truth data - тоже решаемая проблема. Можно взять другую модель от другого поставщика (например, Claude 3.5 Sonnet v2) и сравнивать ответы разных моделей. Если они сошлись, то обе модели извлекают правильно. Если расходятся, то одна из черепашек – ошибается. Строим heatmap, чтобы понять масштаб проблем и пойти улучшать.
(3) то, что в данном проекте извлечение данных из PDF - это implementation detail. И Gemini и Sonnet по API принимают на вход PDF.
(4) обе модели начинают путаться, когда за раз хочется извлечь заказ на покупку на 20-30 позиций со всеми данными. Разбивка процесса извлечения на два промпта повышает качество. Но есть теория, что нормальный CoT поможет стабильно извлекать одним единственным промптом.

И еще тут возникает интересный момент с тестированием. Команда проекта бралась за него зная, что может быть проблема с получением ground truth data для тестов. А без тестов обычно браться за LLM проекты - я считаю слишком рискованным.

Но в этом проекте сразу было понятно, какие блоки можно тестировать и как (а это не всегда так). Плюс было видно, что можно временно заменить ground truth данные сравнением результатов двух моделей. А это уже позволяет запустить стабильный и контроллируемый цикл разработки. Потом можно будет либо вручную разметить часть PDF либо получить исходные данные из БД.

Во вторых, в проекте есть аж две очевидных точки для тестирования внутренних блоков - тест на извлечение PDF-ок и тест на результаты работы всего pipeline (что в такой-то PDF-ке есть такие-то ошибки).

Добавление нескольких точек тестирования сильно снижает риски реализации данного проекта. Поэтому его можно было брать.

А как вы тестируете свои проекты с LLM под капотом? И что делаете, если удобных данных для тестирования нет?

Ваш, @llm_under_hood 🤗

BY LLM под капотом




Share with your friend now:
tg-me.com/llm_under_hood/481

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

telegram from br


Telegram LLM под капотом
FROM USA