Telegram Group & Telegram Channel
Кейсы: Структурированное извлечение данных из документов, типичные проблемы и советы

Вчера консультировал компанию, которая занимается логистикой в Европе. Они пилят внутренний продукт с LLM под капотом.

Кейс - нужно извлекать информацию из таможенных деклараций, чтобы автоматически загружать в дальнейший бизнес-процесс. Ситуация осложняется тем, что в каждой стране EU свой формат деклараций, а единого электронного формата пока нет.

Текущий статус - используют Google Gemini, которому скармливают страницы и просят извлечь ответ по структуре. Есть даже evaluation datasets. По ним видно, что точность пока недостаточна.

Но вот как этот прототип масштабировать до стабильного продукта в компании и осознанно двигаться к повышению качества - они пока не знают. А галлюцинаций там хватает.

У меня было минут 30, поэтому быстро прошлись по их решению и сразу перешли к обсуждению того, как с этим работать. Мои советы были очень типичны - просто подсветить приоритет того, что нужно сделать в первую очередь:

(1) Закрыть Feedback Loop и сделать так, чтобы можно было очень быстро тестировать качество работы всего пайплайна после любого изменения. В идеале, если на выходе будет визуализация ошибок в виде heatmap.

(вот пример визуализации: https://labs.abdullin.com/res/ai-assistants-ru-S02M13-heatmaps.png)

Тогда можно будет повысить качество просто подбором параметров pipeline. Причем это будет делать не от балды, а осознанно - по паттернам ошибок.

(2) Выкинуть ненужный мусор из промпта и начать использовать SO/CoT на всю катушку. У них был текстовый промпт, который не использовал ни Literals (вместо этого добавили вручную правило в текст) ни встраивал цепочки рассуждений перед проблемными полями. Из-за этого точность была сильно хуже того, что можно было получить.

(3) Следить за Signal vs Noise и декомпозировать, если сложные задачи. Но извлечение данных - это обычно задача простая.

И, в принципе, все. Этих вещей достаточно для того, чтобы начать двигаться в правильном направлении с технической стороны.

А одной команде это и вовсе помогло решить полностью конкретную проблему в инструменте для командной работы. Было:

Оно по сути работает, но надежности добиться не получается никак… Причем иногда оно стабильно работает неделями, а потом чето рандомно ломается) Довольно плохо слушает инструкции, даже жесткие. Модели разные пробовали, лучше всего на гпт 4о.

Подскажи пожалуйста, в нашем кейсе реально добиться надежности или пока технологически ограничены?


После подсветки приоритетов команда сфокусировалась на главном и быстро получила результат:

Да действительно так все и оказалось как ты говорил.

Нормальный промпт, SO+checklist показали приемлемую надежность в ответах даже на датасете со сложными переменными даты и времени.

Спасибо 🤝


Так что если у вас в продукте с LLM под капотом есть схожая ситуация, то для начала можно свериться с тремя пунктами выше. А для осознанности и понимания контекста можно еще прочитать разборы других кейсов продуктов с LLM под капотом.

Кто-нибудь еще валидирует ошибки не одной accuracy, а интересной таблицей или графиком? Поделитесь скриншотами своих визуализаций!

Ваш, @llm_under_hood 🤗
👍66🔥3314🥰2😁1



tg-me.com/llm_under_hood/544
Create:
Last Update:

Кейсы: Структурированное извлечение данных из документов, типичные проблемы и советы

Вчера консультировал компанию, которая занимается логистикой в Европе. Они пилят внутренний продукт с LLM под капотом.

Кейс - нужно извлекать информацию из таможенных деклараций, чтобы автоматически загружать в дальнейший бизнес-процесс. Ситуация осложняется тем, что в каждой стране EU свой формат деклараций, а единого электронного формата пока нет.

Текущий статус - используют Google Gemini, которому скармливают страницы и просят извлечь ответ по структуре. Есть даже evaluation datasets. По ним видно, что точность пока недостаточна.

Но вот как этот прототип масштабировать до стабильного продукта в компании и осознанно двигаться к повышению качества - они пока не знают. А галлюцинаций там хватает.

У меня было минут 30, поэтому быстро прошлись по их решению и сразу перешли к обсуждению того, как с этим работать. Мои советы были очень типичны - просто подсветить приоритет того, что нужно сделать в первую очередь:

(1) Закрыть Feedback Loop и сделать так, чтобы можно было очень быстро тестировать качество работы всего пайплайна после любого изменения. В идеале, если на выходе будет визуализация ошибок в виде heatmap.

(вот пример визуализации: https://labs.abdullin.com/res/ai-assistants-ru-S02M13-heatmaps.png)

Тогда можно будет повысить качество просто подбором параметров pipeline. Причем это будет делать не от балды, а осознанно - по паттернам ошибок.

(2) Выкинуть ненужный мусор из промпта и начать использовать SO/CoT на всю катушку. У них был текстовый промпт, который не использовал ни Literals (вместо этого добавили вручную правило в текст) ни встраивал цепочки рассуждений перед проблемными полями. Из-за этого точность была сильно хуже того, что можно было получить.

(3) Следить за Signal vs Noise и декомпозировать, если сложные задачи. Но извлечение данных - это обычно задача простая.

И, в принципе, все. Этих вещей достаточно для того, чтобы начать двигаться в правильном направлении с технической стороны.

А одной команде это и вовсе помогло решить полностью конкретную проблему в инструменте для командной работы. Было:

Оно по сути работает, но надежности добиться не получается никак… Причем иногда оно стабильно работает неделями, а потом чето рандомно ломается) Довольно плохо слушает инструкции, даже жесткие. Модели разные пробовали, лучше всего на гпт 4о.

Подскажи пожалуйста, в нашем кейсе реально добиться надежности или пока технологически ограничены?


После подсветки приоритетов команда сфокусировалась на главном и быстро получила результат:

Да действительно так все и оказалось как ты говорил.

Нормальный промпт, SO+checklist показали приемлемую надежность в ответах даже на датасете со сложными переменными даты и времени.

Спасибо 🤝


Так что если у вас в продукте с LLM под капотом есть схожая ситуация, то для начала можно свериться с тремя пунктами выше. А для осознанности и понимания контекста можно еще прочитать разборы других кейсов продуктов с LLM под капотом.

Кто-нибудь еще валидирует ошибки не одной accuracy, а интересной таблицей или графиком? Поделитесь скриншотами своих визуализаций!

Ваш, @llm_under_hood 🤗

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/544

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

telegram from br


Telegram LLM под капотом
FROM USA