Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.
π Abstract: This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.
Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.
π Abstract: This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.
Spiking bond yields driving sharp losses in tech stocks
A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year.
A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.
Telegram Be The Next Best SPAC
I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. Iβm waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegramβs pre-initial coin offering (ICO) tokens. βIf Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,β he says.