Telegram Group & Telegram Channel
Кейсы: Структурированное извлечение данных из документов, типичные проблемы и советы

Вчера консультировал компанию, которая занимается логистикой в Европе. Они пилят внутренний продукт с LLM под капотом.

Кейс - нужно извлекать информацию из таможенных деклараций, чтобы автоматически загружать в дальнейший бизнес-процесс. Ситуация осложняется тем, что в каждой стране EU свой формат деклараций, а единого электронного формата пока нет.

Текущий статус - используют Google Gemini, которому скармливают страницы и просят извлечь ответ по структуре. Есть даже evaluation datasets. По ним видно, что точность пока недостаточна.

Но вот как этот прототип масштабировать до стабильного продукта в компании и осознанно двигаться к повышению качества - они пока не знают. А галлюцинаций там хватает.

У меня было минут 30, поэтому быстро прошлись по их решению и сразу перешли к обсуждению того, как с этим работать. Мои советы были очень типичны - просто подсветить приоритет того, что нужно сделать в первую очередь:

(1) Закрыть Feedback Loop и сделать так, чтобы можно было очень быстро тестировать качество работы всего пайплайна после любого изменения. В идеале, если на выходе будет визуализация ошибок в виде heatmap.

(вот пример визуализации: https://labs.abdullin.com/res/ai-assistants-ru-S02M13-heatmaps.png)

Тогда можно будет повысить качество просто подбором параметров pipeline. Причем это будет делать не от балды, а осознанно - по паттернам ошибок.

(2) Выкинуть ненужный мусор из промпта и начать использовать SO/CoT на всю катушку. У них был текстовый промпт, который не использовал ни Literals (вместо этого добавили вручную правило в текст) ни встраивал цепочки рассуждений перед проблемными полями. Из-за этого точность была сильно хуже того, что можно было получить.

(3) Следить за Signal vs Noise и декомпозировать, если сложные задачи. Но извлечение данных - это обычно задача простая.

И, в принципе, все. Этих вещей достаточно для того, чтобы начать двигаться в правильном направлении с технической стороны.

А одной команде это и вовсе помогло решить полностью конкретную проблему в инструменте для командной работы. Было:

Оно по сути работает, но надежности добиться не получается никак… Причем иногда оно стабильно работает неделями, а потом чето рандомно ломается) Довольно плохо слушает инструкции, даже жесткие. Модели разные пробовали, лучше всего на гпт 4о.

Подскажи пожалуйста, в нашем кейсе реально добиться надежности или пока технологически ограничены?


После подсветки приоритетов команда сфокусировалась на главном и быстро получила результат:

Да действительно так все и оказалось как ты говорил.

Нормальный промпт, SO+checklist показали приемлемую надежность в ответах даже на датасете со сложными переменными даты и времени.

Спасибо 🤝


Так что если у вас в продукте с LLM под капотом есть схожая ситуация, то для начала можно свериться с тремя пунктами выше. А для осознанности и понимания контекста можно еще прочитать разборы других кейсов продуктов с LLM под капотом.

Кто-нибудь еще валидирует ошибки не одной accuracy, а интересной таблицей или графиком? Поделитесь скриншотами своих визуализаций!

Ваш, @llm_under_hood 🤗
👍66🔥3314🥰2😁1



tg-me.com/llm_under_hood/544
Create:
Last Update:

Кейсы: Структурированное извлечение данных из документов, типичные проблемы и советы

Вчера консультировал компанию, которая занимается логистикой в Европе. Они пилят внутренний продукт с LLM под капотом.

Кейс - нужно извлекать информацию из таможенных деклараций, чтобы автоматически загружать в дальнейший бизнес-процесс. Ситуация осложняется тем, что в каждой стране EU свой формат деклараций, а единого электронного формата пока нет.

Текущий статус - используют Google Gemini, которому скармливают страницы и просят извлечь ответ по структуре. Есть даже evaluation datasets. По ним видно, что точность пока недостаточна.

Но вот как этот прототип масштабировать до стабильного продукта в компании и осознанно двигаться к повышению качества - они пока не знают. А галлюцинаций там хватает.

У меня было минут 30, поэтому быстро прошлись по их решению и сразу перешли к обсуждению того, как с этим работать. Мои советы были очень типичны - просто подсветить приоритет того, что нужно сделать в первую очередь:

(1) Закрыть Feedback Loop и сделать так, чтобы можно было очень быстро тестировать качество работы всего пайплайна после любого изменения. В идеале, если на выходе будет визуализация ошибок в виде heatmap.

(вот пример визуализации: https://labs.abdullin.com/res/ai-assistants-ru-S02M13-heatmaps.png)

Тогда можно будет повысить качество просто подбором параметров pipeline. Причем это будет делать не от балды, а осознанно - по паттернам ошибок.

(2) Выкинуть ненужный мусор из промпта и начать использовать SO/CoT на всю катушку. У них был текстовый промпт, который не использовал ни Literals (вместо этого добавили вручную правило в текст) ни встраивал цепочки рассуждений перед проблемными полями. Из-за этого точность была сильно хуже того, что можно было получить.

(3) Следить за Signal vs Noise и декомпозировать, если сложные задачи. Но извлечение данных - это обычно задача простая.

И, в принципе, все. Этих вещей достаточно для того, чтобы начать двигаться в правильном направлении с технической стороны.

А одной команде это и вовсе помогло решить полностью конкретную проблему в инструменте для командной работы. Было:

Оно по сути работает, но надежности добиться не получается никак… Причем иногда оно стабильно работает неделями, а потом чето рандомно ломается) Довольно плохо слушает инструкции, даже жесткие. Модели разные пробовали, лучше всего на гпт 4о.

Подскажи пожалуйста, в нашем кейсе реально добиться надежности или пока технологически ограничены?


После подсветки приоритетов команда сфокусировалась на главном и быстро получила результат:

Да действительно так все и оказалось как ты говорил.

Нормальный промпт, SO+checklist показали приемлемую надежность в ответах даже на датасете со сложными переменными даты и времени.

Спасибо 🤝


Так что если у вас в продукте с LLM под капотом есть схожая ситуация, то для начала можно свериться с тремя пунктами выше. А для осознанности и понимания контекста можно еще прочитать разборы других кейсов продуктов с LLM под капотом.

Кто-нибудь еще валидирует ошибки не одной accuracy, а интересной таблицей или графиком? Поделитесь скриншотами своих визуализаций!

Ваш, @llm_under_hood 🤗

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/544

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

telegram from ca


Telegram LLM под капотом
FROM USA