Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.

PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.

Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.

PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.

Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.

▶️ В документации к проекту доступны примеры применения PydanticAI в сценариях:

🟢Построение Pydantic-модели на основе текстового ввода;
🟢Погодный агент;
🟢Агент поддержки клиентов банка;
🟢Генерация SQL-запросов на основе пользовательского ввода;
🟢RAG-поиск по массиву markdown-документам;
🟢Вывод результатов работы агента в терминале;
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов;
🟢Простой чат-приложение.

⚠️ PydanticAI находится на ранней стадии бета-тестирования.

▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:

# Install via  PyPI
pip install pydantic-ai

# Set Gemini API key
export GEMINI_API_KEY=your-api-key

# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""


📌Лицензирование: MIT License.


🟡Документация
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Framework #PydanticAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/python_job_interview/923
Create:
Last Update:

🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.

PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.

Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.

PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.

Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.

▶️ В документации к проекту доступны примеры применения PydanticAI в сценариях:

🟢Построение Pydantic-модели на основе текстового ввода;
🟢Погодный агент;
🟢Агент поддержки клиентов банка;
🟢Генерация SQL-запросов на основе пользовательского ввода;
🟢RAG-поиск по массиву markdown-документам;
🟢Вывод результатов работы агента в терминале;
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов;
🟢Простой чат-приложение.

⚠️ PydanticAI находится на ранней стадии бета-тестирования.

▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:

# Install via  PyPI
pip install pydantic-ai

# Set Gemini API key
export GEMINI_API_KEY=your-api-key

# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""


📌Лицензирование: MIT License.


🟡Документация
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Framework #PydanticAI

BY Python вопросы с собеседований





Share with your friend now:
tg-me.com/python_job_interview/923

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

telegram from ca


Telegram Python вопросы с собеседований
FROM USA