Telegram Group & Telegram Channel
سری های زمانی در پایتون
خب، نوبت آن فرارسیده است که وارد بحث بسیار شیرین و پرکاربرد سری های زمانی در پایتون و کاربرهای عملی آن در مالی و اقتصاد بپردازیم.
اما قبل از آن لازم است تا توضیحات مختصری در این خصوص را خدمت شما عرض نماییم.
معمولا داده های آماری در سه گروه بررسی می شوند:
1- داده های سری زمانی(Time Series Data): همانطور که از نام آن بر می آید این داده ها مقادیر یک یا چند متغیر را طی یک دوره زمانی ارائه می کند. در واقع هدف اصلی در بررسی سری های زمانی ایجاد یک مدل آماری برای داده‌های وابسته به زمان براساس اطلاعات گذشته آن پدیده است.
برای پاسخ به سوالات زیر از سری های زمانی استفاده می کنیم:
الف- وضعیت تولید ناخالص داخلی ایران در مواجهه با تحریم ها چه تغییری داشته است.
ب- بهترین زمان برای خرید سهم A طی سه سال گذشته چه زمانی بوده است.
ج-چگونه ارزش شاخص سهام یک کشور با تغییر مولفه های اقتصادی کلان آن کشور تغییر می کند.
2- داده های مقطعی (Cross-Sectional Data): اگر مقادیر یک یا چند متغیر در یک برش زمانی مشخصجمع­­آوری می­شود داده های مقطعی ایجاد شده است. مثلا قیمت انواع نان در روز 28 شهریور 98 در کشور ایران
برای پاسخ به سوالات زیر از داده های مقطعی استفاده می کنیم:
الف- بازده متوسط سهام شرکت های پذیرفته شده در بورس ایران در سال 98
ب- مقایسه GDP کشورهای مختلف جهان در سال 98
3- داده های تابلویی، یا پنل یا ترکیبی (Panel Data): این نوع داده ترکیبی از دو نوع داده قبلی هستند و شامل مشاهداتی برای چندین بخش مختلف ( مثلا خانوار، بنگاه و...) هستند که در طی زمان‌های مختلف جمع‌آوری شده‌اند.
برای پاسخ به سوالات زیر از داده های پنل استفاده می کنیم:
الف- بررسی رابطه ماهیانه بین سود و بازده شرکتهای بورسی در طی 12 ماه سال 1398
ب- مقایسه GDP کشورهای مختلف از سال 1990 تا امروز

#پایتون_مالی
#انواع_داده_ها
#سری_زمانی

پایتون برای مالی در تلگرام https://www.tg-me.com/cn/Python4Finance/com.python4finance
پایتون برای مالی در بله https://ble.im/cn/Python4Finance/com.python4finance



tg-me.com/python4finance/72
Create:
Last Update:

سری های زمانی در پایتون
خب، نوبت آن فرارسیده است که وارد بحث بسیار شیرین و پرکاربرد سری های زمانی در پایتون و کاربرهای عملی آن در مالی و اقتصاد بپردازیم.
اما قبل از آن لازم است تا توضیحات مختصری در این خصوص را خدمت شما عرض نماییم.
معمولا داده های آماری در سه گروه بررسی می شوند:
1- داده های سری زمانی(Time Series Data): همانطور که از نام آن بر می آید این داده ها مقادیر یک یا چند متغیر را طی یک دوره زمانی ارائه می کند. در واقع هدف اصلی در بررسی سری های زمانی ایجاد یک مدل آماری برای داده‌های وابسته به زمان براساس اطلاعات گذشته آن پدیده است.
برای پاسخ به سوالات زیر از سری های زمانی استفاده می کنیم:
الف- وضعیت تولید ناخالص داخلی ایران در مواجهه با تحریم ها چه تغییری داشته است.
ب- بهترین زمان برای خرید سهم A طی سه سال گذشته چه زمانی بوده است.
ج-چگونه ارزش شاخص سهام یک کشور با تغییر مولفه های اقتصادی کلان آن کشور تغییر می کند.
2- داده های مقطعی (Cross-Sectional Data): اگر مقادیر یک یا چند متغیر در یک برش زمانی مشخصجمع­­آوری می­شود داده های مقطعی ایجاد شده است. مثلا قیمت انواع نان در روز 28 شهریور 98 در کشور ایران
برای پاسخ به سوالات زیر از داده های مقطعی استفاده می کنیم:
الف- بازده متوسط سهام شرکت های پذیرفته شده در بورس ایران در سال 98
ب- مقایسه GDP کشورهای مختلف جهان در سال 98
3- داده های تابلویی، یا پنل یا ترکیبی (Panel Data): این نوع داده ترکیبی از دو نوع داده قبلی هستند و شامل مشاهداتی برای چندین بخش مختلف ( مثلا خانوار، بنگاه و...) هستند که در طی زمان‌های مختلف جمع‌آوری شده‌اند.
برای پاسخ به سوالات زیر از داده های پنل استفاده می کنیم:
الف- بررسی رابطه ماهیانه بین سود و بازده شرکتهای بورسی در طی 12 ماه سال 1398
ب- مقایسه GDP کشورهای مختلف از سال 1990 تا امروز

#پایتون_مالی
#انواع_داده_ها
#سری_زمانی

پایتون برای مالی در تلگرام https://www.tg-me.com/cn/Python4Finance/com.python4finance
پایتون برای مالی در بله https://ble.im/cn/Python4Finance/com.python4finance

BY Python4Finance




Share with your friend now:
tg-me.com/python4finance/72

View MORE
Open in Telegram


Python4Finance Telegram | DID YOU KNOW?

Date: |

Launched in 2013, Telegram allows users to broadcast messages to a following via “channels”, or create public and private groups that are simple for others to access. Users can also send and receive large data files, including text and zip files, directly via the app.The platform said it has more than 500m active users, and topped 1bn downloads in August, according to data from SensorTower.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Python4Finance from cn


Telegram Python4Finance
FROM USA