Telegram Group & Telegram Channel
๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Backdooring Bias into Text-to-Image Models

๐Ÿ”ธ Presenter: Mehrdad Aksari Mahabadi

๐ŸŒ€ Abstract:
This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.

๐Ÿ“„ Paper: Backdooring Bias into Text-to-Image Models

Session Details:
- ๐Ÿ“… Date: Sunday
- ๐Ÿ•’ Time: 5:00 - 6:00 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! โœŒ๏ธ



tg-me.com/RIMLLab/140
Create:
Last Update:

๐Ÿ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

โœ… This Week's Presentation:

๐Ÿ”น Title: Backdooring Bias into Text-to-Image Models

๐Ÿ”ธ Presenter: Mehrdad Aksari Mahabadi

๐ŸŒ€ Abstract:
This paper investigates the misuse of text-conditional diffusion models, particularly text-to-image models, which create visually appealing images based on user descriptions. While these images generally represent harmless concepts, they can be manipulated for harmful purposes like propaganda. The authors show that adversaries can introduce biases through backdoor attacks, affecting even well-meaning users. Despite users verifying image-text alignment, the attack remains hidden by preserving the text's semantic content while altering other image features to embed biases, amplifying them by 4-8 times. The study reveals that current generative models make such attacks cost-effective and feasible, with costs ranging from 12 to 18 units. Various triggers, objectives, and biases are evaluated, with discussions on mitigations and future research directions.

๐Ÿ“„ Paper: Backdooring Bias into Text-to-Image Models

Session Details:
- ๐Ÿ“… Date: Sunday
- ๐Ÿ•’ Time: 5:00 - 6:00 PM
- ๐ŸŒ Location: Online at vc.sharif.edu/ch/rohban


We look forward to your participation! โœŒ๏ธ

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/140

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

If riding a bucking bronco is your idea of fun, youโ€™re going to love what the stock market has in store. Consider this past weekโ€™s ride a preview.The weekโ€™s action didnโ€™t look like much, if you didnโ€™t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

telegram from cn


Telegram RIML Lab
FROM USA