Telegram Group & Telegram Channel
Challenges-on-generating-structurally-diverse-graphs

В репозитории опубликован код для воспроизведения результатов работы по генерации структурно разнообразных графов. Авторы впервые формализуют и системно исследуют задачу построения наборов графов с максимальным структурным разнообразием — задача, критически важная для тестирования алгоритмов на графах, оценки нейросетевых приближений и построения бенчмарков. В работе подробно анализируется, как определить меру разнообразия для множества графов и почему задача не сводится к стандартным генераторам случайных графов. Введён показатель diversity на основе агрегирования попарных расстояний между графами (Energy), обладающий важными теоретическими свойствами, как монотонность и уникальность. Экспериментально исследованы и сравниваются различные алгоритмы генерации: жадный отбор из большого пула, генетические алгоритмы, локальная оптимизация и нейросетевые генеративные модели. Показано, что предлагаемые методы существенно превосходят классические случайные модели, например, Erdős–Rényi, GraphWorld, по мере diversity, позволяя получать выборки графов с сильно отличающимися характеристиками. Исследование также даёт новые инсайты о свойствах различных метрик расстояния между графами. Работа будет полезна исследователям в области графов, алгоритмистам, а также разработчикам бенчмарков и тестовых наборов для графовых задач.

статья | код



tg-me.com/hse_cs_opensource/104
Create:
Last Update:

Challenges-on-generating-structurally-diverse-graphs

В репозитории опубликован код для воспроизведения результатов работы по генерации структурно разнообразных графов. Авторы впервые формализуют и системно исследуют задачу построения наборов графов с максимальным структурным разнообразием — задача, критически важная для тестирования алгоритмов на графах, оценки нейросетевых приближений и построения бенчмарков. В работе подробно анализируется, как определить меру разнообразия для множества графов и почему задача не сводится к стандартным генераторам случайных графов. Введён показатель diversity на основе агрегирования попарных расстояний между графами (Energy), обладающий важными теоретическими свойствами, как монотонность и уникальность. Экспериментально исследованы и сравниваются различные алгоритмы генерации: жадный отбор из большого пула, генетические алгоритмы, локальная оптимизация и нейросетевые генеративные модели. Показано, что предлагаемые методы существенно превосходят классические случайные модели, например, Erdős–Rényi, GraphWorld, по мере diversity, позволяя получать выборки графов с сильно отличающимися характеристиками. Исследование также даёт новые инсайты о свойствах различных метрик расстояния между графами. Работа будет полезна исследователям в области графов, алгоритмистам, а также разработчикам бенчмарков и тестовых наборов для графовых задач.

статья | код

BY Открытый код ФКН ВШЭ




Share with your friend now:
tg-me.com/hse_cs_opensource/104

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

telegram from cn


Telegram Открытый код ФКН ВШЭ
FROM USA