Telegram Group & Telegram Channel
Ребята из финтеха Точка сделали классный разбор того, как обучать ML-модели, когда размеченных данных мало, а времени и бюджета на ручную разметку нет.

В посте собрали описания несколько подходов, которые реально работают: Active Learning, Semi-Supervised Learning, Transfer Learning. Главный фокус — на Weak Supervision и том, как автоматизировать разметку с помощью эвристик, баз знаний, краудсорсинга и языковых моделей.

Подробно разложен по полочкам Programmatic Weak Supervision (PWS). Рассказали:

- как создавать разметочные функции;
- как агрегировать противоречивые слабые метки;
- как использовать генеративную модель для оценки качества;
- как на основе этой автоматической разметки обучать полноценную дискриминативную модель.

Если в ваших проектах нет разметки, этот пост поможет обойти это ограничение и быстро и качественно обучить модели.

Читать пост

Подписывайтесь на канал Точки .ml — там разборы инструментов, обзоры фреймворков и выжимки из статей.



tg-me.com/ai_machinelearning_big_data/7697
Create:
Last Update:

Ребята из финтеха Точка сделали классный разбор того, как обучать ML-модели, когда размеченных данных мало, а времени и бюджета на ручную разметку нет.

В посте собрали описания несколько подходов, которые реально работают: Active Learning, Semi-Supervised Learning, Transfer Learning. Главный фокус — на Weak Supervision и том, как автоматизировать разметку с помощью эвристик, баз знаний, краудсорсинга и языковых моделей.

Подробно разложен по полочкам Programmatic Weak Supervision (PWS). Рассказали:

- как создавать разметочные функции;
- как агрегировать противоречивые слабые метки;
- как использовать генеративную модель для оценки качества;
- как на основе этой автоматической разметки обучать полноценную дискриминативную модель.

Если в ваших проектах нет разметки, этот пост поможет обойти это ограничение и быстро и качественно обучить модели.

Читать пост

Подписывайтесь на канал Точки .ml — там разборы инструментов, обзоры фреймворков и выжимки из статей.

BY Machinelearning


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7697

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Machinelearning from de


Telegram Machinelearning
FROM USA