В репозитории содержится код для экспериментов, показывающих линейность трансформеров. Авторы исследуют механизм, при котором соседние слои декодера (например, в GPT, LLaMA, OPT и BLOOM) оказываются почти линейно зависимыми. Используя Procrustes-метрику, показывается, что выходы последовательных слоев совпадают с точностью ~99% (но лишь при учёте residual connection). Исследователи демонстрируют, что нормировка выхода каждого блока относительно residual-части весьма мала, и это приводит к «линейности» между слоями. Кроме того, в работе изучаются задачи «прореживания» (pruning) слоёв на основе выявленной линейности и замены некоторых блоков их линейными аналогами без значимой потери в качестве. Предложены также регуляризационные приёмы на основе косинусной близости, снижающие линейность для повышения выразительности модели и улучшения результатов на ряде задач (TinyStories, SuperGLUE). Работа может быть полезна исследователям и практикам, занимающимся анализом внутренней структуры больших языковых моделей, а также LLM-инженерам, стремящимся к более эффективным моделям при сохранении качества.
В репозитории содержится код для экспериментов, показывающих линейность трансформеров. Авторы исследуют механизм, при котором соседние слои декодера (например, в GPT, LLaMA, OPT и BLOOM) оказываются почти линейно зависимыми. Используя Procrustes-метрику, показывается, что выходы последовательных слоев совпадают с точностью ~99% (но лишь при учёте residual connection). Исследователи демонстрируют, что нормировка выхода каждого блока относительно residual-части весьма мала, и это приводит к «линейности» между слоями. Кроме того, в работе изучаются задачи «прореживания» (pruning) слоёв на основе выявленной линейности и замены некоторых блоков их линейными аналогами без значимой потери в качестве. Предложены также регуляризационные приёмы на основе косинусной близости, снижающие линейность для повышения выразительности модели и улучшения результатов на ряде задач (TinyStories, SuperGLUE). Работа может быть полезна исследователям и практикам, занимающимся анализом внутренней структуры больших языковых моделей, а также LLM-инженерам, стремящимся к более эффективным моделям при сохранении качества.
Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”
To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.