Telegram Group & Telegram Channel
Что означает сложность алгоритма?

Сложность алгоритма представляет собой меру его эффективности и определяет количество ресурсов, таких как время и память, необходимых для его выполнения.

Существуют два основных типа сложности алгоритма: временная сложность и пространственная сложность.

Временная сложность алгоритма оценивает время, необходимое для его выполнения, в зависимости от размера входных данных. Обычно время выполнения алгоритма измеряется в тактах процессора или в секундах. Примеры временной сложности включают константную сложность O(1) (выполнение за постоянное время), линейную сложность O(n) (выполнение занимает время, пропорциональное размеру входных данных) и квадратичную сложность O(n^2) (выполнение занимает время, пропорциональное квадрату размера входных данных).

Пространственная сложность алгоритма оценивает объем памяти, необходимый для его выполнения, в зависимости от размера входных данных. Обычно пространственная сложность измеряется в байтах. Примеры пространственной сложности включают константную сложность O(1) (не зависит от размера входных данных), линейную сложность O(n) (потребляет память, пропорционально размеру входных данных) и квадратичную сложность O(n^2) (потребляет память, пропорционально квадрату размера входных данных).



tg-me.com/php_interview_lib/772
Create:
Last Update:

Что означает сложность алгоритма?

Сложность алгоритма представляет собой меру его эффективности и определяет количество ресурсов, таких как время и память, необходимых для его выполнения.

Существуют два основных типа сложности алгоритма: временная сложность и пространственная сложность.

Временная сложность алгоритма оценивает время, необходимое для его выполнения, в зависимости от размера входных данных. Обычно время выполнения алгоритма измеряется в тактах процессора или в секундах. Примеры временной сложности включают константную сложность O(1) (выполнение за постоянное время), линейную сложность O(n) (выполнение занимает время, пропорциональное размеру входных данных) и квадратичную сложность O(n^2) (выполнение занимает время, пропорциональное квадрату размера входных данных).

Пространственная сложность алгоритма оценивает объем памяти, необходимый для его выполнения, в зависимости от размера входных данных. Обычно пространственная сложность измеряется в байтах. Примеры пространственной сложности включают константную сложность O(1) (не зависит от размера входных данных), линейную сложность O(n) (потребляет память, пропорционально размеру входных данных) и квадратичную сложность O(n^2) (потребляет память, пропорционально квадрату размера входных данных).

BY Библиотека собеса по PHP | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/php_interview_lib/772

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

telegram from es


Telegram Библиотека собеса по PHP | вопросы с собеседований
FROM USA