Telegram Group & Telegram Channel
🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7668
Create:
Last Update:

🌟 PlayDiffusion: инпейнт для речи.

Те, кто работает с синтезом речи, знают, что авторегрессионные трансформерные модели, хоть и хороши для генерации речи из текста с нуля, но создают кучу проблем, когда нужно редактирование. Стандартные методы, в виде полной перегенерации предложения, обходятся дорого по ресурсам и часто приводят к изменению интонации или ритма.

Замена отдельного слова обычно оставляет неприятные «склейки» на границах, а перегенерация с середины фразы может испортить уже существующую часть. Все это бьет по естественности и связности звучания.

PlayAI выпустила PlayDiffusion 1.0 – диффузионную модель для редактирования речи, которая умеет изменять нужные участки аудио, сохраняя при этом общую гладкость и характеристики голоса. Причем модель пригодна как для реальной речи, так и для аудио, сгенерированного другими TTS-моделями.

В PlayDiffusion аудиопоток кодируется в дискретное пространство, превращаясь в более компактную последовательность токенов. Затем, тот сегмент, который требует модификации маскируется.

После этого задействуется сама диффузионная модель. Она, опираясь на обновленный текстовый контент, «восстанавливает» замаскированную область, убирая шум. На выходе последовательность токенов снова преобразуется в полноценный звук с помощью декодера BigVGAN.

Чтобы добиться таких результатов, PlayAI взяли за основу текстовую трансформерную архитектуру и внесли несколько ключевых модификаций:

🟢Во-первых, это некаузальное маскирование, позволяющее модели одновременно учитывать прошлые, настоящие и будущие токены, в отличие от стандартных GPT-подобных моделей.

🟢Во-вторых, используется кастомный BPE-токенизатор всего на 10 000 текстовых токенов, что резко сокращает размер таблицы эмбеддингов и ускоряет вычисления.

🟢В-третьих, модель учитывает характеристики диктора с помощью предобученной эмбеддинг-модели, которая преобразует аудиозаписи переменной длины в векторы фиксированного размера.

Интересно, что если замаскировать вообще всю аудиодорожку, PlayDiffusion может работать как TTS. В отличие от авторегрессионных моделей, которые генерируют каждый токен последовательно, опираясь на предыдущие, диффузионные модели генерят все токены одновременно, а затем уточняют их за фиксированное число шагов.

Например, для генерации 20 секунд аудио кодеком на 50 Гц авторегрессионной модели потребуется 1000 шагов. PlayDiffusion же способен выдать все 1000 токенов сразу и уточнить их всего за 20 итераций – это до 50 раз эффективнее по количеству шагов генерации.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #Inpainting #PlayDiffusion #PlayAI

BY Machinelearning




Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7668

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Machinelearning from fr


Telegram Machinelearning
FROM USA