Telegram Group & Telegram Channel
⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!

Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.

Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»

Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»

Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.

🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!

🔥 Спасибо всем, кто был с нами и участвовал!

💘 Как же это было?

Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉



tg-me.com/cppprogbook/535
Create:
Last Update:

⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!

Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.

Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»

Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»

Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.

🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!

🔥 Спасибо всем, кто был с нами и участвовал!

💘 Как же это было?

Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉

BY Книги для C/C++ разработчиков




Share with your friend now:
tg-me.com/cppprogbook/535

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

telegram from fr


Telegram Книги для C/C++ разработчиков
FROM USA