Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.

PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.

Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.

PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.

Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.

▶️ В документации к проекту доступны примеры применения PydanticAI в сценариях:

🟢Построение Pydantic-модели на основе текстового ввода;
🟢Погодный агент;
🟢Агент поддержки клиентов банка;
🟢Генерация SQL-запросов на основе пользовательского ввода;
🟢RAG-поиск по массиву markdown-документам;
🟢Вывод результатов работы агента в терминале;
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов;
🟢Простой чат-приложение.

⚠️ PydanticAI находится на ранней стадии бета-тестирования.

▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:

# Install via  PyPI
pip install pydantic-ai

# Set Gemini API key
export GEMINI_API_KEY=your-api-key

# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""


📌Лицензирование: MIT License.


🟡Документация
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Framework #PydanticAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/python_job_interview/922
Create:
Last Update:

🌟 PydanticAI: фреймворк для создания AI-агентов на основе Pydantic.

PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.

Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.

PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.

Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.

▶️ В документации к проекту доступны примеры применения PydanticAI в сценариях:

🟢Построение Pydantic-модели на основе текстового ввода;
🟢Погодный агент;
🟢Агент поддержки клиентов банка;
🟢Генерация SQL-запросов на основе пользовательского ввода;
🟢RAG-поиск по массиву markdown-документам;
🟢Вывод результатов работы агента в терминале;
🟢Пример проверки потокового структурированного ответа на примере информации о видах китов;
🟢Простой чат-приложение.

⚠️ PydanticAI находится на ранней стадии бета-тестирования.

▶️Установка и простой пример "Hello Word" с Gemini-1.5-flash:

# Install via  PyPI
pip install pydantic-ai

# Set Gemini API key
export GEMINI_API_KEY=your-api-key

# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""


📌Лицензирование: MIT License.


🟡Документация
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Agents #Framework #PydanticAI

BY Python вопросы с собеседований





Share with your friend now:
tg-me.com/python_job_interview/922

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

telegram from fr


Telegram Python вопросы с собеседований
FROM USA