Telegram Group & Telegram Channel
✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ai_machinelearning_big_data/7034
Create:
Last Update:

✔️ Factorio стала новым бенчмарком для ИИ.

Factorio привлекла внимание ресерчеров в качестве инструмента для оценки возможностей ИИ. Игра измеряет способность языковых моделей планировать и создавать сложные системы, одновременно управляя ресурсами и производственных цепочек.

Для этих целей была разработана среда Factorio Learning Environment (FLE) c двумя режимами: "Lab-Play" (24 структурированные задачи) и "Open Play", где агенты исследуют процедурно сгенерированные карты с целью построить максимально большую фабрику. В процессе тестирования модели взаимодействуют с Factorio через Python API и получают обратную связь через игровой сервер. Оцениваются параметры "Производственный показатель" и достижение ключевых "Вех".

Создатели протестировали 6 LLM, включая Claude 3.5 Sonnet и GPT-4o. Результаты показали, что модели испытывают серьезные трудности с пространственным мышлением, долгосрочным планированием и исправлением ошибок. Лучшие результаты у Claude 3.5 Sonnet, которая успешно справилась с 15 из 24 задач в режиме "Lab Play".
jackhopkins.github.io

✔️ Американцы все чаще считают, что искусственный разум превосходит их интеллект.

Исследование, проведенное Университетом Элона, выявило, что почти половина пользователей (49%) полагает, что LLM превосходят их собственный интеллект. Из отчета следует, что женщины чаще мужчин считают LLM "значительно умнее" (30% против 20%), а половина взрослого населения США уже использует языковые модели, лидирует ChatGPT с долей в 72%. Также выяснилось, что большинство пользователей (51%) применяют LLM в личных целях для обучения и планирования, в то время как для работы их используют лишь 24%. 65% пользователей взаимодействуют с ИИ-системами посредством голосовых команд.

Несмотря на высокий показатель общей удовлетворенности (76%), значительная часть пользователей сталкивается с проблемами: 23% совершали серьезные ошибки из-за галлюцинаций моделей в ответах, а 21% чувствовали себя манипулируемыми.
imaginingthedigitalfuture.org

✔️ ReasonGraph: инструмент для анализа ризонинга LLM.

ReasonGraph - опенсорсная веб-платформа, разработанная Кембриджским университетом, для визуализации и анализа процессов рассуждений LLM. Она поддерживает как последовательные, так и древовидные методы рассуждений, легко интегрируясь с основными провайдерами LLM и более чем 50 языковыми моделями.
Платформа построена на модульном каркасе и имеет выбор метода мета-рассуждения и настраиваемые параметры визуализации.

ReasonGraph улучшает обнаружение ошибок в логических процессах и способствует более эффективной разработке приложений на основе LLM. Оценка платформы показала практически 100% точность rule-based XML-парсинга при извлечении и визуализации путей рассуждений.
Репозиторий проекта на Github. Демо на HuggingFace.
arxiv.org

✔️ MEGA mini: концепт архитектуры для универсальных NPU.

На конференции по твердотельным схемам (ISSCC) была представлена архитектура MEGA.mini, позиционируемая как универсальный процессор для генеративного ИИ.

MEGA.mini использует парадигму Arm big.LITTLE и предлагает использование двухъядерной концепции в NPU. Предполагается, что высокомощные ядра "Mega" будут задействоваться для выполнения ресурсоемких задач, а облегченные ядра "Mini" будут использоваться для рутинных операций. Архитектура разрабатывается как универсальный процессор, в отличие от CPU, чтобы разработчики могли применять его в разных сценариях - от NLP-задач до мультимодальных ИИ-систем.
techradar.com

✔️ Deepseek R1 671B запустили локально на новом Mac Ultra M3.

YouTube-блогер Дейв Ли провел эксперимент по локальному запуску 4-bit версии Deepseek R1 с 671B параметров. Она может работать локально, но требует 512 ГБ RAM, 404 ГБ хранилища и принудительного выделения 448 ГБ видеопамяти через терминал.

Несмотря на незначительное снижение точности, скорость инференса составила 17-18 токенов в секунду, при этом энергопотребление находилось в пределах 200 Вт. Для сравнения: ПК с аналогичной производительностью потребовал бы в 10 раз больше электричества.
macrumors.com

@ai_machinelearning_big_data

#news #ai #ml

BY Machinelearning




Share with your friend now:
tg-me.com/ai_machinelearning_big_data/7034

View MORE
Open in Telegram


Machinelearning Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Machinelearning from hk


Telegram Machinelearning
FROM USA