Telegram Group & Telegram Channel
✔️ ttt-rl (Tic-Tac-Toe Reinforcement Learning)

🎯 Суть проекта
Это эксперимент по обучению с подкреплением (Reinforcement Learning, RL), где агент учится играть в крестики-нолики (Tic-Tac-Toe) без использования нейронных сетей. Основная цель — продемонстрировать, как классические методы RL справляются с простыми играми.

🔥 Чем интересен?
Минимализм и простота
Весь код написан на чистом C (~400 строк).
Нет зависимостей — только стандартная библиотека.
Идеален для изучения основ RL «с нуля».

Классический подход к RL
Используется метод Temporal Difference (TD) Learnin
Агент обучается через игру (self-play) и обновляет стратегию на основе наград.

Образовательная ценность
Понятная визуализация процесса обучения (таблицы Q-значений).
Пример того, как простая задача помогает понять фундамент RL.

Эффективность
После обучения агент играет почти оптимально, избегая поражений.
Код легко модифицировать для экспериментов (например, изменить размер доски).

📊 Как это работает?
Q-таблица хранит «ценность» каждого действия в конкретном состоянии.

Агент выбирает ход на основе текущих Q-значений (с добавлением случайности для исследования).


P.S. Если вы думаете, что RL — это только про AlphaGo и Dota 2, этот проект покажет, что даже в простых задачах есть глубина! 🧠

Github

@cpluspluc

#rl #ml #ai #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/cpluspluc/997
Create:
Last Update:

✔️ ttt-rl (Tic-Tac-Toe Reinforcement Learning)

🎯 Суть проекта
Это эксперимент по обучению с подкреплением (Reinforcement Learning, RL), где агент учится играть в крестики-нолики (Tic-Tac-Toe) без использования нейронных сетей. Основная цель — продемонстрировать, как классические методы RL справляются с простыми играми.

🔥 Чем интересен?
Минимализм и простота
Весь код написан на чистом C (~400 строк).
Нет зависимостей — только стандартная библиотека.
Идеален для изучения основ RL «с нуля».

Классический подход к RL
Используется метод Temporal Difference (TD) Learnin
Агент обучается через игру (self-play) и обновляет стратегию на основе наград.

Образовательная ценность
Понятная визуализация процесса обучения (таблицы Q-значений).
Пример того, как простая задача помогает понять фундамент RL.

Эффективность
После обучения агент играет почти оптимально, избегая поражений.
Код легко модифицировать для экспериментов (например, изменить размер доски).

📊 Как это работает?
Q-таблица хранит «ценность» каждого действия в конкретном состоянии.

Агент выбирает ход на основе текущих Q-значений (с добавлением случайности для исследования).


P.S. Если вы думаете, что RL — это только про AlphaGo и Dota 2, этот проект покажет, что даже в простых задачах есть глубина! 🧠

Github

@cpluspluc

#rl #ml #ai #tutorial

BY C++ Academy




Share with your friend now:
tg-me.com/cpluspluc/997

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

telegram from hk


Telegram C++ Academy
FROM USA