Telegram Group & Telegram Channel
У меня радостная новость 🎉. Вчера показали клиенту прототип продукта для продуктовых каталогов. Продукт автоматически заполняет пропущенные поля в описаниях продуктов, а так же находит ошибки.

Клиент - специализированная розничная сеть с годовым оборотом в 100M+ EUR. Они в восторге, хотят себе такую штуку как можно быстрее.

Ранее я разбирал кейс с персональным ассистентом в компании (https://www.tg-me.com/hk/telegram/com.llm_under_hood/4). Теперь расскажу, как устроен и этот продукт.

Кейс продукта с LLM/GPT под капотом: заполняет каталоги продуктов и фиксит ошибки. #case

У магазинов с онлайн-магазинами есть такая проблема - описания товаров и продуктов не всегда полные, иногда даже бывают ошибки в описаниях. Каждая ошибка - это потенциально недовольный клиент или упущенная выгода. А с учетом того, что ассортимент меняется постоянно, то надо еще и тратить время на заполнение новых продуктов.

Заполнение привлекательных текстовых описаний на базе свойств товара - это отдельная статья расходов. А если в свойствах товара была ошибка, то и описание может понадобиться переписать.

Поэтому торговым сетям сейчас очень интересны системы, которые могут самостоятельно заполнять свойства продуктов, находить ошибки, предлагать исправления и новые варианты описаний.

Это экономит время и нервы сотрудникам, позволяет иметь актуальный каталог, что положительно сказывается на продажах.

Даже если продукт стоит в месяц как месячная зарплата 2-3 людей (плюс налоги и отчисления), это будет выгоднее, чем держать выделенный штат. Компьютеры не устают, не скучают, могут круглосуточно ползать по каталогу в поисках новых ошибок. А людям можно отдать более интересные задачи.

Для проверки такой продуктовой гипотезы мы быстренько сделали прототип, который прошелся по каталогу отдной розничной сети и выдал PDF отчет со списком исправлений и новых текстов.

Прототип работает достаточно просто (схема тут - https://www.tg-me.com/hk/telegram/com.llm_under_hood/22):

1. Берем исходные продукты из каталога
2. Для каждого продукта ищем аналогичные страницы в интернете, используя search API. Обычно находятся конкурирующие магазины, страницы производителей и просто обзоры
3. Фильтруем мусор на выдаче поисковика (GPT, выбери мне только полезные ссылки для такого продукта)
4. Оставшиеся страницы загружаем при помощи Selenium
5. Достаем все свойства продукта из страниц (GPT, достань мне свойства для этого продукта по вот такой вот схеме)
6. Самое хитрое - просим GPT критически посмотреть на исходные свойства продукта, а также на потенциальных кандидатов, чтобы предложить потенциальные исправления
7. Генерируем отчет со списком исправлений полей продукта. Для каждого исправления есть ссылки на конкретные страницы и документы, откуда были извлечены альтернативные поля.
8. Генерируем новые текстовые описания продукта с учетом исправленной информации, маркетингового посыла компании и аудитории. Заодно и генерируем посты в соц. сеточки.

Пришлось повозиться с шагами 3, 5 и 7. Каталоги не на английском, поэтому из коробки ChatGPT работал так себе. После работы с выборками и добавления few-shot samples, результаты получились вполне хорошие. Шаги 3 и 5 получилось вынести на GPT3.5, седьмой шаг пока на GPT4. Но уже есть представления, как это можно утащить на затюненную локальную модель.


Прелесть этого продукта в том, что для его демонстрации не нужно было интегрироваться с внутренними системами клиента. Просто запустили систему на online магазине клиента, выбрав самые популярные товары и вручную заполнив исходный список полей. А дальше уже продукт пошел сам собирать исправления в интернете. Полученный отчет показали клиенту. А дальше - см. начало этого поста)

С таким подходом можно высылать предложения множеству разных клиентов :)

Ну что, поехали делать такие системы для своих знакомых торговых сетей? 😊

Ссылка на этот кейс и обсуждение: https://www.tg-me.com/hk/telegram/com.llm_under_hood/21
🔥253👍1



tg-me.com/llm_under_hood/21
Create:
Last Update:

У меня радостная новость 🎉. Вчера показали клиенту прототип продукта для продуктовых каталогов. Продукт автоматически заполняет пропущенные поля в описаниях продуктов, а так же находит ошибки.

Клиент - специализированная розничная сеть с годовым оборотом в 100M+ EUR. Они в восторге, хотят себе такую штуку как можно быстрее.

Ранее я разбирал кейс с персональным ассистентом в компании (https://www.tg-me.com/hk/telegram/com.llm_under_hood/4). Теперь расскажу, как устроен и этот продукт.

Кейс продукта с LLM/GPT под капотом: заполняет каталоги продуктов и фиксит ошибки. #case

У магазинов с онлайн-магазинами есть такая проблема - описания товаров и продуктов не всегда полные, иногда даже бывают ошибки в описаниях. Каждая ошибка - это потенциально недовольный клиент или упущенная выгода. А с учетом того, что ассортимент меняется постоянно, то надо еще и тратить время на заполнение новых продуктов.

Заполнение привлекательных текстовых описаний на базе свойств товара - это отдельная статья расходов. А если в свойствах товара была ошибка, то и описание может понадобиться переписать.

Поэтому торговым сетям сейчас очень интересны системы, которые могут самостоятельно заполнять свойства продуктов, находить ошибки, предлагать исправления и новые варианты описаний.

Это экономит время и нервы сотрудникам, позволяет иметь актуальный каталог, что положительно сказывается на продажах.

Даже если продукт стоит в месяц как месячная зарплата 2-3 людей (плюс налоги и отчисления), это будет выгоднее, чем держать выделенный штат. Компьютеры не устают, не скучают, могут круглосуточно ползать по каталогу в поисках новых ошибок. А людям можно отдать более интересные задачи.

Для проверки такой продуктовой гипотезы мы быстренько сделали прототип, который прошелся по каталогу отдной розничной сети и выдал PDF отчет со списком исправлений и новых текстов.

Прототип работает достаточно просто (схема тут - https://www.tg-me.com/hk/telegram/com.llm_under_hood/22):

1. Берем исходные продукты из каталога
2. Для каждого продукта ищем аналогичные страницы в интернете, используя search API. Обычно находятся конкурирующие магазины, страницы производителей и просто обзоры
3. Фильтруем мусор на выдаче поисковика (GPT, выбери мне только полезные ссылки для такого продукта)
4. Оставшиеся страницы загружаем при помощи Selenium
5. Достаем все свойства продукта из страниц (GPT, достань мне свойства для этого продукта по вот такой вот схеме)
6. Самое хитрое - просим GPT критически посмотреть на исходные свойства продукта, а также на потенциальных кандидатов, чтобы предложить потенциальные исправления
7. Генерируем отчет со списком исправлений полей продукта. Для каждого исправления есть ссылки на конкретные страницы и документы, откуда были извлечены альтернативные поля.
8. Генерируем новые текстовые описания продукта с учетом исправленной информации, маркетингового посыла компании и аудитории. Заодно и генерируем посты в соц. сеточки.

Пришлось повозиться с шагами 3, 5 и 7. Каталоги не на английском, поэтому из коробки ChatGPT работал так себе. После работы с выборками и добавления few-shot samples, результаты получились вполне хорошие. Шаги 3 и 5 получилось вынести на GPT3.5, седьмой шаг пока на GPT4. Но уже есть представления, как это можно утащить на затюненную локальную модель.


Прелесть этого продукта в том, что для его демонстрации не нужно было интегрироваться с внутренними системами клиента. Просто запустили систему на online магазине клиента, выбрав самые популярные товары и вручную заполнив исходный список полей. А дальше уже продукт пошел сам собирать исправления в интернете. Полученный отчет показали клиенту. А дальше - см. начало этого поста)

С таким подходом можно высылать предложения множеству разных клиентов :)

Ну что, поехали делать такие системы для своих знакомых торговых сетей? 😊

Ссылка на этот кейс и обсуждение: https://www.tg-me.com/hk/telegram/com.llm_under_hood/21

BY LLM под капотом


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/llm_under_hood/21

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

telegram from hk


Telegram LLM под капотом
FROM USA