Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/machinelearning_books/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Машиннное обучение | Наука о данных Библиотека | Telegram Webview: machinelearning_books/1010 -
Telegram Group & Telegram Channel
📌VLM становятся умнее, быстрее и доступнее.

Технологии, связанные с VLM переживают настоящий бум в 2025 году. Если раньше они ограничивались базовыми задачами вроде описания картинок, то теперь справляются с логическими рассуждениями, управлением роботами и генерацией видео на лету.

Основной тренд - гибкость: современные «умные» системы могут обрабатывать любые данные: текст, изображения, звук и выдавать ответы в любой форме.

В 2023 году компания Марка Цукерберга представила семейство моделей Chameleon, а команда Qwen доработала ее до Qwen2.5 Omni, которая сочетает генерацию текста и изображений через архитектуру «Thinker-Talker». Иными словами, VLM научились рассуждать.

Размер моделей перестал быть главным критерием. Вместо гигантских сетей разработчики теперь делают компактные версии, которые работают на обычных компьютерах. SmolVLM2 с 500 миллионами параметров справляется с видеоанализом, а Google упаковала мультимодальные способности в Gemma 3 в 1 миллиард параметров. Пользователям важны доступность мощь без лишних затрат.

Еще один эволюционный виток — использование смесей экспертов. Вместо того, чтобы задействовать всю сеть целиком, модели выбирают только нужные части, экономя ресурсы. Kimi-VL от Moonshot AI, например, задействует 2,8 миллиарда параметров из 16, решая сложные задачи. Это как собрать команду специалистов, где каждый отвечает за свою часть работы.

VLM научились не только понимать данные, но и действовать. В робототехнике их используют как «мозг» для управления движениями — π0 от Physical Intelligence складывает белье или собирает коробки, превращая команды в физические действия. А в повседневных задачах, например, с HuggingSnap, модели анализируют видео на смартфонах.

Безопасность тоже стала критичной. Модели ShieldGemma 2 и Llama Guard 4 проверяют контент на соответствие политикам, блокируя вредоносные изображения или текст. Это особенно важно для сервисов, где пользователи загружают персональные медиа.

Наконец, VLM учатся работать с длинными видео и документами. Qwen2.5-VL анализирует часовые видеозаписи, выделяя ключевые кадры, а ColPali помогает находить информацию в PDF без предварительной обработки.

В 2025 году VLM перестали быть «игрушкой» для лабораторий. Они внедряются в реальные задачи: от автоматизации офисной работы до помощи в медицине. Главный вопрос теперь не в том, на что способна та или иная модель, а как быстро ее внедрить на практике.

🟡Статья на Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_books/1010
Create:
Last Update:

📌VLM становятся умнее, быстрее и доступнее.

Технологии, связанные с VLM переживают настоящий бум в 2025 году. Если раньше они ограничивались базовыми задачами вроде описания картинок, то теперь справляются с логическими рассуждениями, управлением роботами и генерацией видео на лету.

Основной тренд - гибкость: современные «умные» системы могут обрабатывать любые данные: текст, изображения, звук и выдавать ответы в любой форме.

В 2023 году компания Марка Цукерберга представила семейство моделей Chameleon, а команда Qwen доработала ее до Qwen2.5 Omni, которая сочетает генерацию текста и изображений через архитектуру «Thinker-Talker». Иными словами, VLM научились рассуждать.

Размер моделей перестал быть главным критерием. Вместо гигантских сетей разработчики теперь делают компактные версии, которые работают на обычных компьютерах. SmolVLM2 с 500 миллионами параметров справляется с видеоанализом, а Google упаковала мультимодальные способности в Gemma 3 в 1 миллиард параметров. Пользователям важны доступность мощь без лишних затрат.

Еще один эволюционный виток — использование смесей экспертов. Вместо того, чтобы задействовать всю сеть целиком, модели выбирают только нужные части, экономя ресурсы. Kimi-VL от Moonshot AI, например, задействует 2,8 миллиарда параметров из 16, решая сложные задачи. Это как собрать команду специалистов, где каждый отвечает за свою часть работы.

VLM научились не только понимать данные, но и действовать. В робототехнике их используют как «мозг» для управления движениями — π0 от Physical Intelligence складывает белье или собирает коробки, превращая команды в физические действия. А в повседневных задачах, например, с HuggingSnap, модели анализируют видео на смартфонах.

Безопасность тоже стала критичной. Модели ShieldGemma 2 и Llama Guard 4 проверяют контент на соответствие политикам, блокируя вредоносные изображения или текст. Это особенно важно для сервисов, где пользователи загружают персональные медиа.

Наконец, VLM учатся работать с длинными видео и документами. Qwen2.5-VL анализирует часовые видеозаписи, выделяя ключевые кадры, а ColPali помогает находить информацию в PDF без предварительной обработки.

В 2025 году VLM перестали быть «игрушкой» для лабораторий. Они внедряются в реальные задачи: от автоматизации офисной работы до помощи в медицине. Главный вопрос теперь не в том, на что способна та или иная модель, а как быстро ее внедрить на практике.

🟡Статья на Huggingface

BY Машиннное обучение | Наука о данных Библиотека




Share with your friend now:
tg-me.com/machinelearning_books/1010

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

telegram from hk


Telegram Машиннное обучение | Наука о данных Библиотека
FROM USA