Telegram Group & Telegram Channel
🤔 Основы математики в Machine Learning / Deep Learning

🗓 6 марта приглашаем вас на прямой эфир, где мы подробно разберем ряд Тейлора, собственные векторы и другие ключевые понятия в ML.
(ссылка)

🌟 Спикер: *Мария Горденко* – Старший преподаватель ФКН НИУ ВШЭ, НИТУ МИСИС, аспирант департамента анализа данных и искусственного интеллекта ФКН НИУ ВШЭ, а также преподаватель на курсе Алгоритмы и структуры данных в proglib academy.


Место работы: Инженер-программист, ведущий эксперт НИУ ВШЭ, цифровой ассистент и цифровой консультант НИУ ВШЭ.


😮 На вебинаре вы узнаете:

🔵 Теорию вероятностей: обсудим случайные величины, вероятность, математическое ожидание и дисперсию.

🔵 Линейную алгебру: изучим векторы, матрицы, собственные векторы и собственные значения.

🔵 Математический анализ: разберем производные и разложение функций в ряд Тейлора.

🔵 Практику: применим полученные знания на реальных кейсах из области Machine Learning и Deep Learning.

🎯 Почему это важно?
Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.

👉 Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!

📌 Регистрация по ссылке: https://proglib.io/w/4eed6544



tg-me.com/py_problems_lib/1032
Create:
Last Update:

🤔 Основы математики в Machine Learning / Deep Learning

🗓 6 марта приглашаем вас на прямой эфир, где мы подробно разберем ряд Тейлора, собственные векторы и другие ключевые понятия в ML.
(ссылка)

🌟 Спикер: *Мария Горденко* – Старший преподаватель ФКН НИУ ВШЭ, НИТУ МИСИС, аспирант департамента анализа данных и искусственного интеллекта ФКН НИУ ВШЭ, а также преподаватель на курсе Алгоритмы и структуры данных в proglib academy.


Место работы: Инженер-программист, ведущий эксперт НИУ ВШЭ, цифровой ассистент и цифровой консультант НИУ ВШЭ.


😮 На вебинаре вы узнаете:

🔵 Теорию вероятностей: обсудим случайные величины, вероятность, математическое ожидание и дисперсию.

🔵 Линейную алгебру: изучим векторы, матрицы, собственные векторы и собственные значения.

🔵 Математический анализ: разберем производные и разложение функций в ряд Тейлора.

🔵 Практику: применим полученные знания на реальных кейсах из области Machine Learning и Deep Learning.

🎯 Почему это важно?
Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.

👉 Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!

📌 Регистрация по ссылке: https://proglib.io/w/4eed6544

BY Библиотека задач по Python | тесты, код, задания




Share with your friend now:
tg-me.com/py_problems_lib/1032

View MORE
Open in Telegram


telegram Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

telegram from hk


Telegram Библиотека задач по Python | тесты, код, задания
FROM USA