Telegram Group & Telegram Channel
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
📌Как Gemini превращает изучение языков в персонализированный опыт: обзор 3 экспериментов.

Представьте, что учите язык не по учебникам, а через ситуации, в которых оказываетесь каждый день. Именно эту идею воплотила команда Google в проекте Little Language Lessons— трех экспериментах на базе Gemini API, которые делают обучение живым и контекстным.

Первый эксперимент, Tiny Lesson, решает проблему «как сказать это сейчас?». Вы описываете ситуацию — например, «потерял паспорт» — и получаете словарь и фразы в формате JSON. Всё благодаря промптам, где Gemini генерирует структурированные данные: массив терминов с транскрипцией и переводом, а также советы по грамматике.

Например, если целевой язык — японский, модель сама определит, нужна ли транскрипция ромадзи, и подготовит материал за 2 API-запроса. Это не просто список слов, а готовый микрокурс под конкретный сценарий.

Второй, Slang Hang, убирает «учебникоговорение». Тут Gemini выступает как сценарист: создаёт диалоги на целевом языке с культурными нюансами и сленгом. Все генерируется одним запросом — от контекста сцены до реплик с пояснениями. Пример: диалог продавца и туриста может включать неформальные выражения, которые не найдешь в стандартных учебниках.

Правда, иногда модель ошибается или придумывает выражения, так что без проверки носителем не обойтись. Но сам подход — дать пользователю «уши» в реальных разговорах выглядит перспективно, особенно с интеграцией Cloud Translation для мгновенного перевода.

Третий, визуальный эксперимент — Word Cam. Наводите камеру на объект, и Gemini не только определяет его (bounding box), но и предлагает слова вроде «подоконник» или «жалюзи». Детекция работает через Gemini Vision, а дополнительные дескрипторы (цвет, материал, примеры употребления) подтягиваются отдельным запросом. Для изучения бытовой лексики почти идеально, хотя точность сильно зависит от качества снимка.

Во всех экспериментах задействован Text-to-Speech — озвучка слов и фраз. Но есть нюанс: для редких языков голоса зачастую звучат неестественно или не совпадают с диалектом. Например, выберете мексиканский испанский, а синтезатор выдаст акцент из Мадрида. Разработчики честно признают: это ограничение текущих API, и над ним еще работать.

Little Language Lessons — начало переосмысления процесса обучения языкам. Проекту пока не хватает тонкой настройки под лингвистическую специфику (идиомы или региональные диалекты), но основа уже заложена.

🟡Статья


@ai_machinelearning_big_data

#AI #ML #LLM #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/Golang_google/2885
Create:
Last Update:

📌Как Gemini превращает изучение языков в персонализированный опыт: обзор 3 экспериментов.

Представьте, что учите язык не по учебникам, а через ситуации, в которых оказываетесь каждый день. Именно эту идею воплотила команда Google в проекте Little Language Lessons— трех экспериментах на базе Gemini API, которые делают обучение живым и контекстным.

Первый эксперимент, Tiny Lesson, решает проблему «как сказать это сейчас?». Вы описываете ситуацию — например, «потерял паспорт» — и получаете словарь и фразы в формате JSON. Всё благодаря промптам, где Gemini генерирует структурированные данные: массив терминов с транскрипцией и переводом, а также советы по грамматике.

Например, если целевой язык — японский, модель сама определит, нужна ли транскрипция ромадзи, и подготовит материал за 2 API-запроса. Это не просто список слов, а готовый микрокурс под конкретный сценарий.

Второй, Slang Hang, убирает «учебникоговорение». Тут Gemini выступает как сценарист: создаёт диалоги на целевом языке с культурными нюансами и сленгом. Все генерируется одним запросом — от контекста сцены до реплик с пояснениями. Пример: диалог продавца и туриста может включать неформальные выражения, которые не найдешь в стандартных учебниках.

Правда, иногда модель ошибается или придумывает выражения, так что без проверки носителем не обойтись. Но сам подход — дать пользователю «уши» в реальных разговорах выглядит перспективно, особенно с интеграцией Cloud Translation для мгновенного перевода.

Третий, визуальный эксперимент — Word Cam. Наводите камеру на объект, и Gemini не только определяет его (bounding box), но и предлагает слова вроде «подоконник» или «жалюзи». Детекция работает через Gemini Vision, а дополнительные дескрипторы (цвет, материал, примеры употребления) подтягиваются отдельным запросом. Для изучения бытовой лексики почти идеально, хотя точность сильно зависит от качества снимка.

Во всех экспериментах задействован Text-to-Speech — озвучка слов и фраз. Но есть нюанс: для редких языков голоса зачастую звучат неестественно или не совпадают с диалектом. Например, выберете мексиканский испанский, а синтезатор выдаст акцент из Мадрида. Разработчики честно признают: это ограничение текущих API, и над ним еще работать.

Little Language Lessons — начало переосмысления процесса обучения языкам. Проекту пока не хватает тонкой настройки под лингвистическую специфику (идиомы или региональные диалекты), но основа уже заложена.

🟡Статья


@ai_machinelearning_big_data

#AI #ML #LLM #Gemini

BY Golang


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Golang_google/2885

View MORE
Open in Telegram


Golang Telegram | DID YOU KNOW?

Date: |

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Golang from id


Telegram Golang
FROM USA